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Estimating Zooplankton Biomass Distribution in the 
Water Column Near the Endeavour Segment of Juan de Fuca Ridge 

Using Acoustic Backscatter and Concurrently Towed Nets

	 B y  B r e n d a  J .  B u r d  a n d  R i c h a r d  E .  T h omso    n

Cowen et al., 2001; Wakeham et al., 
2001). Logistical challenges, time, and the 
cost of towed net surveys make it diffi-
cult to examine secondary biomass and 
production in the open Northeast Pacific 
outside the summer sampling season. 
Profiling or moored acoustic backscatter 
instrumentation can provide an opera-
tionally more efficient way to estimate 
bulk zooplankton biomass distributions 
throughout the water column if the 
biomass can be measured with reason-
able accuracy by the acoustics.

This study examines the use of off-
the-shelf acoustic instrumentation to 

map large-scale, long-term variability 
in bulk zooplankton biomass in the 
vicinity of the Endeavour Segment 
hydrothermal vents. As frequently 
happens in science, this particular study 
was completely outside the realm of the 
original research project. Our original 
intent was to measure the deep hori-
zontal current velocity associated with 
the vent fields at the ridge. Consequently, 
the project began in September of 1987 
with the lowering of a Teledyne-RDI 
153 kHz acoustic Doppler current 
profiler (ADCP) through the hydro-
thermal vent plumes where they rise 
roughly 200 m above the floor of the 
axial valley that runs the length of the 
ridge segment (Delaney et al., 1992). 
This approach didn’t work very well due 
to high positioning errors associated 
with the ship’s nondifferential Global 
Positioning System (GPS). Fortuitously, 
the backscatter signal from the ADCP 
(which measures current velocity from 
the Doppler frequency shift of passively 
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Introduc tion
Downward organic fluxes from marine 
production in the surface ocean, as well 
as upward organic fluxes from vent 
plumes that originate at the seafloor, 
influence biological productivity in the 
deep water column near the hydro-
thermal vents on Endeavour Segment, 
Juan de Fuca Ridge, in the Northeast 
Pacific (Figure 1). The vent material can 
be subsequently distributed throughout 
the water column by enriched concentra-
tions of deep migrating and reproducing 
zooplankton above the spreading vent 
plumes (Burd and Thomson, 1994, 1995; 

Abstr ac t. Logistical challenges, time, and the cost of towed net surveys make it 
difficult to obtain estimates of secondary biomass and production in the open ocean 
outside the summer sampling season. Alternate approaches are sometimes needed. 
This study examines the relationship between biomass obtained from 197 mixed-
species zooplankton net samples and proximate acoustic backscatter data collected 
over six summers, a depth range of 3,000 m, and a spatial scale of 200 km centered at 
a major hydrothermal region in the Northeast Pacific Ocean. Results show that the 
acoustic backscatter data from a single-frequency (150 kHz) acoustic Doppler current 
profiler mounted near the opening of the towed net system accounts for 84% of the 
variance in total net biomass, despite the remarkable mix of faunal types and depth 
range, and the broad spatial and temporal extent of the study. We discuss the potential 
reasons for the minor remaining variance in net biomass. The present findings 
demonstrate that profiling or moored acoustic backscatter instrumentation can 
provide a less-challenging methodology than net tows for obtaining bulk estimates of 
deep-sea zooplankton biomass in the open waters of the Northeast Pacific.
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drifting particles in the water) revealed 
a pronounced negative anomaly within 
the core of the rising buoyant portion 
of the plume. These findings suggested 
a depletion in zooplankton concentra-
tion related to toxicity within the plume 
(Thomson et al., 1989), which spurred 
considerable discussion (Palmer and 
Rona, 1990; Thomson et al., 1990). In 
the meantime, a second acoustic survey 
in August of 1988 revealed yet another 
anomaly. In addition to the acoustic 
backscatter depletion within the rising 
plume, enhanced scattering layers 
50–100 m thick were located roughly 
200 m above the seafloor coincident with 
the top of the buoyantly rising hydro-
thermal plumes (Thomson et al., 1991). 
It stood to reason that if the acoustic 
depletion within the plume was due to 
lack of zooplankton, the enhancement 
above the plume (termed the “epiplume”) 
was due to enhanced zooplankton 

concentration. Subsequently, in June of 
1990, we towed a five-net Tucker trawl 
with 1 mm mesh nets through the water 
column near Endeavour Segment, as 
well as some distance to the north and 
east of the main vent field, confirming 
that these acoustic anomalies matched 
zooplankton biomass patterns from 
nets (Burd et al., 1992; Thomson et al., 
1992a). From 1991 onward, the sampling 
package and study were refined by: 
(1) attaching the ADCP and other 
instruments to a seven-net opening-
and-closing system, (2) use of finer 
mesh (0.33 mm) nets, and (3) accurate 
estimates of flow volume through the 
attached nets using the ADCP current 
measurements and attitude sensors 
(Burd and Thomson, 1993). 

Detailed examination of zooplankton 
communities in the region over the next 
few years (Burd et al., 1992; Burd and 
Thomson, 1994, 1995) revealed that the 

epiplume fauna were a mixture of typical, 
highly diverse deep-sea fauna, along 
with ontogenetic migrators (particularly 
Neocalanus spp.) and their predators, all 
of which were thought to be restricted 
to maximum depths of 800–900 m in 
the Northeast Pacific (Miller et al., 1984; 
Batchelder, 1985; Terazaki and Miller, 
1986; Landry and Fagerness, 1988; 
Miller and Clemons, 1988). Indeed, we 
did not observe these migrators below 
1,000 m outside the general region of 
the Endeavour vent fields. Acoustic 
patterns and a simple circulation model 
suggested that nondiurnal vertical 
migrations were occurring between the 
epiplume layer and the upper ocean 
(Burd and Thomson, 1994; Burd et al., 
2002), and that round-trip migrations 
were possible without the animals being 
advected beyond range of the detectable 
hydrothermal effluent. 

Studies focusing on near-bottom 
zooplankton (particularly larval forms of 
vent benthos) near hydrothermal vents 
(Wishner, 1980; Berg and Van Dover, 
1987; Wiebe et al., 1988; Mullineaux 
et al., 1995) suggest an enrichment 
of biomass compared with nonvent 
areas, except within the core of the 
spreading plume itself. We found no 
vent or typical deep-sea benthic larvae 
above the vent plumes, supporting the 
suggestion that toxicity in the spreading 
neutrally buoyant hydrothermal plume 
tended to act as a barrier between the 
epiplume and near-bottom zooplankton. 
The spreading hydrothermal plume 
clearly provides an extraordinary food 
source for the epiplume zooplankton, 
as stable isotope analyses indicate (Burd 
et al., 2002). This food source results 
in elevated biomass of zooplankton 
throughout the water column in the 
summer season near vents (Burd and 

Figure 1. Tow transects in the region of Endeavour Segment of the Juan de Fuca Ridge off the 
west coast of Vancouver Island, British Columbia, Canada. Tows were concentrated along the 
axial valley and up to 200 km distant on either side.
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Thomson, 1994). Later studies showed 
that this elevated biomass could be 
explained by greatly increased reproduc-
tive output from the epiplume fauna as 
evidenced by concentration and lipid 
composition of ascending particles near 
the vents (Cowen et al., 2001; Wakeham 
et al., 2001). The vents are, therefore, 
likely to affect regional food chains, 
productivity, and organic carbon cycling 
throughout the water column, which 
cannot be understood without detailed 
knowledge of variability and patterns in 
water-column biomass.

The Problem
The animals living in the vicinity of 
Endeavour Segment, ranging from 
macrozooplankton to jellyfish to various 
deep-sea species of fish and, possibly, 
fin and blue whales (Soule et al., 2009; 
Wilcock et al., 2009), seem to be taking 
advantage of hydrothermal venting as 
an extraordinary food source. However, 
we could not be sure if the deep scat-
tering layers, migratory patterns, and 
biomass enhancement observed in the 
water column near Endeavour Segment 
were not just seasonal (spring-summer) 
phenomena. Deep-tow surveys using 
nets are time-consuming and labor-
intensive, and the nets cannot be 
deployed at all for much of the year due 
to high waves and winds. A solution is 
to moor acoustic profiling instruments 
above the seafloor near the vent fields, 
as is being done in collaboration with 
NEPTUNE Canada (Barnes et al., 2008; 
http://www.neptunecanada.ca/research/
research-projects), where an ongoing 
mooring program using near-bottom 
upward- and downward-looking ADCPs 
is underway. However, for this approach 
to be useful, we need to know if we can 
use the acoustic signal from ADCPs 

for first-order estimates of zooplankton 
biomass. To address this problem, we 
simultaneously collected net samples and 
single-frequency acoustic backscatter 
data using a custom-designed instrument 
package. Although simultaneous use of 
combined nets and acoustics in the upper 
portion of the water column is not new 
(see Greene et al., 1998), the application 
of this combined instrumentation to the 
deep water column, along with the exten-
sive spatial and temporal coverage in a 
single study, are certainly unusual.

A review of the use of acoustic 
Doppler current profilers to estimate 
zooplankton biomass (Flagg and Smith, 
1989; Heywood et al., 1991; Zhou et al., 
1994; Brierley et al., 1998; Foote and 
Stanton, 2000; Fielding et al., 2004) 
is beyond the scope of this article. 
Moreover, most of the historical work 
on zooplankton biomass, migration 
timing, and associated triggers has 
focused on the upper ocean (see Fischer 
and Visbeck, 1993; Zhou et al., 1994; 
Brierley et al., 1998; Pinot and Jansa, 
2001; Benoit-Bird and Au, 2004; Lee 
et al., 2008). Unlike the present work, 
few studies have combined net tows 
and acoustic profiling to examine 
zooplankton distributions in the deep 
ocean, particularly at deep hydro-
thermal venting sites. 

One of the primary purposes of the 
present study was to test the usefulness 
of ADCPs as a relatively quick meth-
odology for the quantification of bulk 
zooplankton biomass over the entire 
water column in the open ocean. With 
concurrently collected net biomass and 
acoustic data from 197 net samples 
collected over six years and towed over 
a 3,000 m depth range within 200 km 
of the well-studied Main Endeavour 
vent field, it was possible to examine 

a very general empirical relationship 
between acoustic backscattering volume 
and concurrently collected net biomass. 
This broad-brush approach ignores 
the unique sound-scattering proper-
ties of different size classes and types 
of organisms, as well as a number of 
other potential complicating factors 
including: (1) sampling over different 
times of the day or night, (2) sampling 
fauna composed of a remarkable mix of 
passive drifters (> 100 species per net 
sample; Burd and Thomson, 1994, 1995) 
and having varying degrees of swimming 
and migratory abilities, (3) conducting 
surveys over broad spatial scales, on a 
variety of research vessels, during six 
different summers, and (4) the effects 
of net avoidance by the animals (see 
Sameoto, 1980; Stanton et al., 1987; 
Demer and Hewitt, 1995).

The Approach
The tow package called SCUID (Self 
Contained Underwater Investigative 
Device) consisted of a 153 kHz RDI 
ADCP with four downward-looking 
transducer heads mounted just below 
a Guildline conductivity, temperature, 
depth (CTD) probe, a Seatech transmis-
someter, and a seven-net Tucker trawl 
apparatus with 330 mm mesh and a 
1 m2 opening at the mouth (Figure 2), 
all controlled onboard ship through 
a multiple-conductor tow cable. The 
package was first lowered through the 
entire water column to allow positioning 
of the survey relative to the vent plumes. 
The ADCP, CTD, and transmissometer 
recorded continuously at high (roughly 
1 Hz) sampling rates throughout each of 
the tows. Nets were typically triggered in 
sequence over selected depth ranges on 
the way back up to the surface (described 
in Burd and Thomson, 1993, 1994). 

http://www.neptunecanada.ca/research/research-projects
http://www.neptunecanada.ca/research/research-projects
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As the ADCP was placed immediately 
below and forward of the net opening, 
the backscatter data from the first ADCP 
acoustic bin (spanning the 4–8 m depth 
range below the net system) was used 
for biomass comparisons because it was 
closest to the nets and is expected to 
have the highest signal-to-noise ratio 
(the acoustic signal from the preset, 
highly nonlinear “blanking range” from 
0–4 m was not recorded). The attitude 
sensors and three-dimensional current 
measuring capabilities of the ADCP 
allowed us to determine the flow volume 
through the nets with 2–3% error 
(Burd and Thomson, 1993) for each 
acoustic interval (consisting of the 
average of 30 one-second acoustic 
values or “pings”). 

Over the June to July sampling 
periods from 1991–1996, we collected 
197 net samples from 33 tows at various 
hours of the day and night within 
200 km of Main Endeavour Field 

(2,200 m deep at 47°57'N, 129°06'W; 
Figure 1). Burd and Thomson (1994) 
describe methods for counting; deter-
mining sex, developmental stage, length, 
and width; and making mean biomass 
measurements for each species. The 
biological data required for the empirical 
comparison with the acoustic scat-
tering signal include the time of day of 
sampling, total faunal biomass for each 
net, and total number (K) of 30-second 
ADCP acoustic sampling intervals per 
net collection period. From the ADCP, 
we acquired the measured flow volume 
entering the net and the acoustic volume 
scattering strength, Sv, for each acoustic 
sampling interval. To normalize the 
scattering strength recorded by the 
ADCP for the range-dependent effects 
of acoustic geometrical spreading and 
absorption (which are major physical 
factors affecting all acoustical signals 
transmitted in the ocean), we subtracted 
the ensemble-averaged background 

scattering strength obtained for the near-
uniform, very-low-biomass zone located 
in the 1,000–1,400 m depth range in this 
Northeast Pacific region (Thomson et al., 
1991, 1992a,b; Burd and Thomson, 1994; 
see also Brierley et al., 1998). Therefore, 
we actually determined the anomaly of 
the acoustic volume scattering strength 
referenced to a regional background 
scattering strength for that depth range 
of the deep ocean (all of our hundreds 
of ADCP profiles through this depth 
range over the years show this region 
to display consistently low acoustic 
backscatter intensity compared to other 
depth ranges). More specifically, the 
volume backscattering strength anomaly 
Ŝv (r) = Sv (r) – [Sv (r)], where the 
brackets denote the ensemble-averaged 
volume scattering strength, was derived 
as a function of acoustic range, r (over 
all ADCP 4 m bins), using acoustic data 
collected during descent through the 
“background” depth range. Although 

Figure 2. Common zooplank-
tonic animals, and schematic 
of the vehicle SQUID as it is 
towed to the right by a ship. 
The package consists of seven 
individual Tucker trawl nets with 
individual cod ends for collecting 
zooplankton samples, a down-
ward looking four-transducer 
153 kHz Teledyne-RDI acoustic 
Doppler current profiler (ADCP), 
a high-resolution Guildline 
conductivity, temperature, depth 
(CTD) probe, a Seatech transmis-
someter for measuring water 
clarity, and a rosette mechanism 
for triggering individual nets 
from the ship. Digital data from 
the electronic instruments are 
transmitted via a conducting 
cable in real time to the ship. 
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this adjustment may not seem critical 
for data from the acoustic bin closest to 
the transducer head (which we used for 
comparison with the net-tow data), we 
felt it prudent to normalize the acoustic 
backscatter signal for any possible 
(and unknown) age-related changes in 
ADCP characteristics (e.g., transducer 
configuration, power output, tempera-
ture compensation) over the six-year 
duration of our study (the same ADCP 
was used throughout the study). Lastly, 
a fraction of the acoustic backscatter will 
be from particles, microzooplankton, 
and density features in the water column 
that are extraneous to the net samples; if 
the zooplankton biomass estimated from 
the ADCP backscattering volume is to be 
representative of the macrozooplankton 
in the nets, these “background” contri-
butions need to be removed from the 
acoustic component. 

For each kth 30-second (30 s) acoustic 
sampling interval, a given net collected a 
portion, mk, of the total net biomass, M. 
The total biomass for each net,  

∑
K

mk ,M =
 

was then compared with the equiva-
lent “acoustic biomass” measured by 
the ADCP during each 30 s sampling 
interval and summed over all sampling 
intervals, K, for a given net (which 
we term, MADCP). Two main factors 
contributed to this acoustically derived 
biomass during each sampling interval: 
the first was the volume of water, vk, that 
the ADCP measures flowing into the 
net during each sampling interval; the 
second was the acoustic volume back-
scattering strength, Sv , of the scatterers 
measured by the ADCP for the volume 
of water entering the net during each 
sampling interval. 

Clearly, the greater the volume of 

water entering the net, the greater the 
biomass likely to be collected by the net. 
The ability to calculate highly accurate 
flow volumes through the nets (Burd and 
Thomson, 1993) allows us to estimate 
the portion of total net water volume 
(vk) which, after being weighted by the 
background-adjusted volume backscat-
tering strength anomaly, Ŝv (r) (which 
can also be described as weighting the 
volume backscattering strength anomaly 
by the flow volume), gives us the portion 
of total net biomass (mk) for each 30 s 
sampling interval. A simplistic approach 
is to assume that the volume backscat-
tering strength anomaly derived from 
the ADCP data for each k th 30 s sampling 
interval is related to a corresponding 
effective volume backscattering coeffi-
cient, ŝv,k (r), by the relation ŝv,k = 10(Ŝv,k/10) 
(see MacLennan et al., 2002), which 
accounts for the acoustic performance of 
the instrument (RDI, 1990), as described 
and used by other researchers (Brierley 
et al., 1998; Ressler, 2002; Jiang et al., 
2007; Postel et al.; 2007; Lee et al., 2008). 
The backscattering coefficient represents 
the integrated response of all backscat-
terers contributing to the ADCP signal, 
ignoring the wide range of animal 
shapes, densities, and orientation, as well 
as possible net avoidance, all of which 
lead to uncertainty and all of which have 
been the focus of much more advanced 
acoustic instrumentation development 
and modeling studies (Brierley et al., 
1998; Greene et al., 1998; Stanton and 
Chu, 2000; Warren and Wiebe, 2008). 

The resulting flow-volume weighted 
acoustic biomass measured by the ADCP 
(MADCP , expressed as volume in m3) for 
each net can then be estimated as  

∑
K

vk[10(Ŝv,k/10)]q,MADCP ~=  
 
where the exponent q (an empirical 

“fudge” factor for unaccounted cross-
sectional backscatter effects related 
to varying zooplankton body shapes, 
orientation, aggregation, and backscat-
tering efficiency) is determined by 
finding the best fit for the data in the 
regressional analysis. The simple linear 
regression equation, total net biomass 
M = α MADCP + β, plotted in log format 
in Figure 3 to better show the spread 
of values, has a slope α = 6.0 mg m–3 

and intercept β = –1,913 mg for the 
197 net samples. The regression equation 
accounts for 84% of the variance in the 
data (adjusted R2), using an optimum 
value for q ~ 0.18. (Even when we omit 
the exponent q from the analysis, the 
regression equation still accounts for 
79% of the variance, indicating that the 
correlation is robust and that q basically 
serves as a fine-tuning parameter for the 
M versus MADCP relationship.) 

The greatest variance in net biomass 
that was not accounted for by the ADCP 
occurred in samples with the highest net 
volume and total biomass towed in the 
upper 800 m of the water column. These 
errors included a relatively even spread 
of underestimates and overestimates of 
net biomass by the ADCP. A comparison 
of unexplained variance with the start 
time of day for each tow indicates 
that time of day does not explain 
this residual variance.

Discussion
Our results suggest that the 153 kHz 
ADCP used in the present study allows 
reasonable bulk estimates of highly 
diverse, mixed-species zooplankton 
biomass in the Northeast Pacific Ocean 
over a broad depth and geographic and 
temporal scales. Despite the pitfalls 
associated with using an uncalibrated, 
single-frequency acoustic system and 
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the lack of refinement related to the 
backscatter properties of the animals 
(due to differences in animal size, shape, 
orientation, and density), the error in 
the estimates was remarkably low (about 
16%). The success of this experiment is 
undoubtedly partially explained by the 
fact that the nets were towed on the same 
instrument package as the ADCP (see 
Greene et al., 1998), thus reducing the 
potential error from measuring different 
volumes of water with the nets and the 
acoustics. In addition, the success of the 
regressional comparison of acoustics and 
net biomass may be related to the fact 
that the balance of faunal types and sizes 
in this region is fairly consistent over 
space and time. We note, however, that 
our acoustic approach is not useful for 
estimating abundance and size distribu-
tions of different types of zooplankton 
(Fielding et al., 2004). 

Much of the unexplained variance 

in net biomass occurred in samples in 
the upper ocean where there was high 
total biomass. There are several possible 
reasons for this result. The upper-ocean 
nets with high biomass were often subdi-
vided into small fractions to facilitate 
counting and identification. When we 
re-examined two net samples that were 
split to greater than 1:1,000, we found 
that actual net biomass had been greatly 
overestimated. Note that underestimates 
could also occur due to sample split-
ting. Another important reason why 
the acoustics may overestimate net 
biomass in the upper ocean is that the 
better swimmers may detect and avoid 
the approaching net (as suggested by 
Zhou et al., 1994). Wiebe et al. (1982) 
and Hovekamp (1989) also describe 
net avoidance by fish and euphausiids 
during the day in the near-surface layer 
of the ocean. However, in the current 
study, time of day did not influence 

results, suggesting that if net avoidance 
is an issue, it may also occur at night 
and may be due to nonvisual factors. 
Other possible reasons that acoustics 
may overestimate net biomass include 
breakage of fragile organisms during net 
tows, added backscatter from turbulent 
microstructure, aggregated particulates, 
and air bubbles near the ocean surface 
(Warren and Wiebe, 2008).

Further reasons that the ADCP may 
underestimate net biomass in the upper 
ocean may be related to variable density 
of the targets, which is not accounted for 
in our comparison. Animals with densi-
ties very similar to water (e.g., jellyfish) 
are poor sound scatterers. Backscatter 
efficiency is also affected by air bladders 
in fish and the hard shells (calcareous 
or chitinous) of fauna. In addition, the 
larger the cross section of an animal 
presented to the acoustic beam, the 
greater the backscatter strength. Some 
animals, such as chaetognaths or 
euphausiids, are long and narrow; others 
orient themselves differently in the water 
column depending on the time of day 
(Sameoto, 1980), thus exposing variable 
fractions of surface area to the acoustic 
signal. These complexities in sound scat-
tering characteristics of mixed species 
assemblages have been the topic of a 
great deal of study in the past several 
decades, and have been reviewed by 
others (Brierley et al., 1998; Greene et al., 
1998; Stanton and Chu, 2000; Postel 
et al., 2007; Fielding et al., 2004). The 
more modern approach is to use detailed 
models of predicted backscatter based on 
the abundance of organisms of different 
sizes, shapes, and scattering properties, 
then compare this predicted model 
with backscatter from calibrated echo-
sounding arrays (the forward calculation 
approach). As with ADCP studies, most 

Figure 3. Log-log scale presentation of total net biomass (M) as a function of equivalent 
acoustic biomass (MADCP) summed over all 30-second duration acoustic intervals for each net. 
Although the relationship (and R2) is given in the text for a linear function, it is plotted here on 
a log-log scale to better show the distribution in data points. 
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of the effort has been focused on upper-
ocean zooplankton abundances, rather 
than on the understudied deep ocean 
examined in our program. 

Next Steps 
Results from our summer net sampling 
program in 1991 and 1992 suggest 
that biomass throughout the water 
column was higher near the Endeavour 
Segment vent field than off axis (Burd 
and Thomson, 1995). This preliminary 
finding can now be examined on a much 
broader spatial and temporal scale using 
acoustic data alone. Initial examina-
tion of data from moored ADCPs near 
Endeavour Segment as part of the 
NEPTUNE Canada cabled observatory 
(Wilcock and Thomson, 2011) suggests 
that the deep scattering layer above the 
spreading hydrothermal plume is not 
just a seasonal event, and that complex 
migratory patterns exist throughout the 
year. It may soon be possible to generate 
reasonable hypotheses about year-round 
patterns in zooplankton biomass related 
to hydrothermal vents. 
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