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aBSTr aC T. Ocean currents, water masses, and seasonal sea ice formation 
determine linkages among and barriers between the biotas of the Bering, Chukchi, 
and Beaufort Seas. The Bering Sea communicates with the Chukchi and Beaufort 
Seas via northward advection of water, nutrients, and plankton through Bering Strait. 
However, continuity of the ocean’s physical properties is modulated by regional 
differences in heat, salt, and sea ice budgets, in particular, along the meridional 
gradient. Using summer density data from zooplankton, fish (bottom and surface 
trawl), and seabird surveys, we define three biogeographic provinces: the Eastern 
Bering Shelf Province (the eastern Bering Sea shelf south of Saint Lawrence 
Island), the Chirikov-Chukchi Province (the eastern Bering Sea shelf north of Saint 
Lawrence Island [Chirikov Basin] and Chukchi Sea), and the Beaufort Sea Province. 
Regional differences in summer distributions of biota largely reflect the underlying 
oceanography. Climate warming will reduce the duration and possibly the extent of 
seasonal ice cover in the Eastern Bering Shelf Province, but this warming may not 
lead to increased abundance of some subarctic species because seasonal ice cover 
and cold (< 2°C) bottom waters on the Bering shelf form a barrier to the northward 
migration of subarctic bottom fish species typical of the southeastern Bering Sea. 
While Arctic species that are dependent upon the summer extent of sea ice face an 
uncertain future, other Arctic species’ resilience to a changing climate will be derived 
from waters that continue to freeze each winter.

point (Pease, 1981). As days shorten, 
ice growth progresses southward from 
the northern Chukchi and Beaufort 
Seas toward Bering Strait and subse-
quently across the northern Bering Sea 
(Figure 2). The southern extent of sea 
ice is determined by a balance between 
southward advection, air-sea heat fluxes, 
and melting at the leading edge as the ice 
encounters warmer water (Pease, 1980; 
Niebauer et al., 1999). 

The upper trophic levels of the south-
eastern Bering Sea are dominated by 
subarctic or temperate-zone bottom 
fish, such as flatfish, walleye pollock, 
and Pacific cod, and substantial produc-
tion reaches both the pelagic and 
benthic communities. Farther to the 
north, there is a profound change in the 
fauna, as large fish become relatively 
scarce (Cui et al., 2009; Norcross et al., 
2010; Stevenson and Lauth, provision-
ally accepted), the benthic community 

receives more of the production than 
the pelagic community (Grebmeier 
and McRoy, 1989), and benthic inver-
tebrates dominate the biomass (Bluhm 
et al., 2009). Seabirds and marine 
mammals are abundant in the Bering, 
Chukchi, and Beaufort Seas; some 
species migrate between summer and 
winter feeding grounds. 

The Bering, Chukchi, and Beaufort 
Seas are important for commercial and 
subsistence harvests, energy reserves, 
and global thermohaline circulation. 
The southeastern Bering Sea provides 
the United States with about 40% of its 
fish and shellfish landings (Van Vorhees 
and Lowther, 2010). Coastal subsistence 
fishers and hunters harvest fish, seabirds, 
and marine mammals for communi-
ties that depend on their catch success 
(Hovelsrud et al., 2008). Nearshore oil 
production already occurs on man-made 
islands in the Beaufort Sea; the Beaufort 
and Chukchi shelves also host many 
potential offshore oil and gas develop-
ment sites. Northward fluxes of fresh-
water through Bering Strait and from 
Canada’s Mackenzie River play a role 
in regulating the North Atlantic’s deep 
convection and the associated global 
thermohaline circulation (Reason and 
Power, 1994; Goosse et al., 1997). 

Arctic marine ecosystems are under-
studied compared to other regions 
(Wassmann et al., 2011), but recently, 
the Bering, Chukchi, and Beaufort Seas 
have been the focus of attention for 
several medium- and large-sized research 
programs. Those with both strong phys-
ical and biological components include 
SBI (Shelf-Basin Interaction, 1998–2008), 
NPCREP (North Pacific Climate Regimes 
and Ecosystem Productivity, 2004–
present), RUSALCA (Russian American 

iNTrODuC TiON
The Bering, Chukchi, and Beaufort Seas 
lie off the western and northern coasts 
of Alaska and provide both physical 
and biological connections between the 
North Pacific and Arctic Oceans. Ocean 
currents (relatively warm in summer and 
fall) flow from the Pacific Ocean across 
the Bering and Chukchi Sea shelves 
(Figure 1) en route to the greater Arctic 
Ocean (Coachman and Aagaard, 1966). 
The Beaufort shelf shares a common 
boundary with the Chukchi shelf to the 
west, and these two shelves commu-
nicate via both surface and subsurface 
flow pathways (Aagaard, 1984; Pickart, 
2004; Münchow et al., 2006). These three 
continental shelves share the character-
istic of seasonal sea ice cover, a domi-
nant phenomenon that structures their 
ecology. Sea ice formation occurs after 
the water column is homogenized by fall 
wind mixing and cooled to the freezing 
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Long Term Census of the Arctic, 2004–
present), BEST (Bering Ecosystem Study, 
2007–present), BSIERP (Bering Sea 
Integrated Ecosystem Research Program, 
2008–present), and BASIS (Bering 
Aleutian Salmon International Survey, 

2002–present). This paper draws upon 
some recent results of these programs. 
(See Supplement Table S1 for a larger 
list of projects undertaken in the eastern 
Bering, Chukchi, and Beaufort Seas.)

In this article, we examine the physical 

and biological components of these 
connected regions and suggest a set of 
biogeographic boundaries. We hypoth-
esize that some of these boundaries may 
resist climate warming and that, in spite 
of future warming, there may be less of a 
northward shift in some faunal elements 
than has been suggested previously 
(e.g., Beaugrand et al., 2002; Perry et al., 
2005; Grebmeier et al., 2006a; Wassmann 
et al., 2011). Our examination focuses 
on meridional differences because 
we are interested in how ice from the 
north and warmer water from the south 
balance and influence biogeography. 
East-west differences also exist; they are 
described but not analyzed. For analysis, 
summer data on zooplankton, fish, and 
seabirds are initially classified into five 
regions; cluster analyses are completed 
on regional-scale data to determine 
whether regions could be associated 
into biogeographic provinces. The five 
initial regions are southern, central, 
and northern Bering Sea, Chukchi 
Sea, and Beaufort Sea (Figure 2). The 
southern-central Bering Sea boundary 
lies at 60°N, which is the approximate 
location of the March minimum ice 
extent; the central-northern Bering Sea 
boundary is placed at Saint Lawrence 
Island, where flows around the island 
accelerate as they converge toward Bering 
Strait; the northern Bering Sea-Chukchi 
Sea boundary is Bering Strait; and the 
Chukchi Sea-Beaufort Sea boundary is 
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Figure 1. The Bering, Chukchi, and 
Beaufort Seas form a continuum 
between the North pacific Ocean 
and the arctic Ocean. This ideal-
ized schematic denotes some of the 
important water masses and currents 
that impact regional differences in 
physical habitat characteristics.
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located at the longitude of Point Barrow. 
We examine density data from summer 
(June–September) zooplankton, fish 
(bottom and surface trawl), and at-sea 
seabird surveys. The surveys were broad-
scale (e.g., entire southeastern Bering Sea 
shelf) and many prominent species were 
sampled, but coastal areas (water depths 
< 20 m) and benthic invertebrates were 
not included in our examination. The 
surveys also were not completed at the 
same time, so that our results are subject 
to annual and seasonal differences in 
community structure. Nevertheless, the 
available data provide a broad-brush 
examination of relationships among 
biota during summer. Zooplankton 
samples were collected with small 
(150 µm) and large (335 or 505 µm) 

mesh nets deployed side by side; species 
were classified based on mean weight 
into small zooplankton (mean weight 
per individual < 0.3 mg blotted wet 
weight from the 150 µm net) and large 
zooplankton (mean weight ≥ 0.3 mg 
from the 335 or 505 µm nets). Fish data 
were collected with bottom trawls that 
sampled the bottom 3 m and surface 
trawls that sampled the top 15 m. These 
trawls were deployed on separate surveys. 
Fish caught by bottom trawl hereafter are 
termed “bottom fish” and those caught 
by surface trawl are termed “surface 
fish.” Some species were caught in both 
surveys, indicating utilization of both 
near-bottom and near-surface habitats. 
Diet data were used to classify species of 
fish (Ivonne Ortiz and Ed Farley, NOAA 

Alaska Fisheries Science Center, pers. 
comm., 2011) and seabirds (Hunt et al., 
1981, 2000) into foraging guilds. Seabird 
sighting data were collected during 
300-m strip transect surveys from vessels 
of opportunity including fish survey 
vessels. For each survey, average densities 
were scaled from zero to the maximum 
value in each region, and scarce species 
were excluded from the cluster analysis. 
The data were analyzed using hier-
archical cluster analysis with Ward’s 
minimum variance method (Legendre 
and Legendre, 1998). A previous 
examination of the biogeography of the 
Bering, Chukchi, and Beaufort Seas used 
presence-absence information (Carleton 
and Hayden, 1993), whereas we use 
information on animal density.

Figure 2. (left) annual cycle of temperatures recorded at the four mooring sites denoted on the map. Data are courtesy of T. weingartner (Dinkum 
and a2), K. aagaard (C55), and p. Stabeno (M2). (right) Surface temperature (ºC) for mid-September derived from satellite observation using 
ghrSST (global Ocean Data assimilation experiment [gODae] high-resolution sea surface temperature data [http://argo.colorado.edu/~realtime/
global-sst]). white lines indicate region boundaries. From south to north, the regions are: southern, central, and northern Bering Sea (eastern shelf); 
Chukchi Sea; and Beaufort Sea.

http://argo.colorado.edu/~realtime/global-sst/
http://argo.colorado.edu/~realtime/global-sst/
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OCeaNOgr aphY
A sea level height difference of approxi-
mately 0.5 m between the North Pacific 
Ocean and the North Atlantic Ocean 
(Stigebrandt, 1984) forces water 
northward through Bering Strait (and 
by continuity, across the Bering and 
Chukchi shelves) with a flux of about 
0.8 Sv (1 Sv = 1 x 106 m3 s–1; Coachman 
and Barnes, 1961; Roach et al., 1995). 
Three distinct water masses comprise 
this flow (Figure 1): Alaskan Coastal 
Water (ACW), Anadyr Water (AW), and 
Bering Shelf Water (BSW). Each reflects 
the culmination of numerous processes 
and geographic origins spanning the 
Bering Sea and Gulf of Alaska.

The Alaska Coastal Current (ACC) 
carries ACW northward through eastern 
Bering Strait (Coachman et al., 1975; 
Woodgate et al., 2005, 2006). ACW is 
formed by summer freshening and solar 
heating of cold, low-salinity inner Bering 
shelf water (Coachman et al., 1975) 
and is depauperate in macronutrients 
(Kachel et al., 2002) and large crusta-
cean zooplankton (e.g., large copepods, 
euphausiids, and amphipods; Hunt and 
Harrison, 1990; Coyle et al., 2011). The 
ACC forms a nearly continuous low-
salinity corridor along the Alaskan coast 
(Sverdrup, 1929; Wiseman and Rouse, 
1980; Royer, 1982; Schumacher et al., 
1982: Stabeno et al., 1995; Weingartner 
et al., 2005a). Near the northern reaches 
of Barrow Canyon, ACW and other 
Pacific-origin waters are redirected 
eastward as part of a Beaufort Sea shelf 
break jet (Pickart, 2004; Spall et al., 2008; 
Nikolopoulos et al., 2009). 

To maintain mass balance with the 
northward flux of water through Bering 
Strait, outer Bering Sea shelf waters 
must be replaced, although the precise 
locations and mechanisms for this are 

not well known (Aagaard et al., 2006). 
Continuity of water-mass properties 
southwest of Bering Strait suggests that 
much of the on-shelf flux occurs along 
the shelf break just south of the Gulf 
of Anadyr (Coachman et al., 1975). 
Flowing through the western portion 
of Bering Strait, AW is relatively salty, 
rich in nutrients, highly productive, and 
carries with it immense numbers of crus-
tacean zooplankton (Walsh et al., 1989; 
Springer et al., 1996).

BSW occupies a density range 
between that of ACW and AW and is 
made up of a mixture of ACW and water 
from along the Bering slope. Because of 
the small mean flows over the middle 
Bering Shelf, BSW likely has a longer 
shelf residence time than ACW and AW 
(Muench et al., 1988). North of Saint 
Lawrence Island, dense AW intrudes 
below BSW, resulting in a highly produc-
tive and stable water column (Walsh 
et al., 1989; Hunt and Harrison, 1990; 
Springer et al., 1996). Pelagic primary 
production is important here, and a 
portion of it descends to the bottom, 
supporting amphipods and the gray 
whales that feed on them (Highsmith 
et al., 2006; Coyle et al., 2007). Another 
portion is advected northward to the 
Chukchi Sea, where gray and bowhead 
whales forage on the benthos and crus-
tacean zooplankton (Walsh et al., 1989; 
Piatt and Springer, 2003; Bluhm et al., 
2007). Intense mixing caused by shears 
in the swift flows through the straits 
blends AW and BSW (Coachman et al., 
1975), introduces dissolved nutrients 
to the euphotic zone, and helps support 
additional production.

AW and ACW create a physical 
continuity for Pacific water from the 
outer shelf and coastal regions of the 
eastern Bering Sea to the Chukchi Sea. In 

contrast, there is a thermal discontinuity 
between near-bottom waters of the south-
eastern middle Bering Sea shelf and the 
middle shelf farther north (Stabeno et al., 
2010; Figure 3). The volume of near-
bottom water with temperatures less than 
2°C is commonly called the “cold pool” 
(Figure 3), and it persists from winter 
until the water column is homogenized in 
the fall by wind mixing and cooling. It is 
re-established in early winter as the water 
column again cools to near-freezing 
temperatures. The cold pool varies annu-
ally in meridional extent (Takenouti 
and Ohtani, 1974; see also Figure 4). 
Of particular importance to our study 
is that during the recent warm years of 
2001–2005, the middle shelf temperature 
measured at a mooring southwest of Saint 
Lawrence Island was similar to measure-
ments made in the subsequent cold years 
of 2007–2010 (Stabeno et al., provision-
ally accepted), evidence that the cold 
pool persists irrespective of the annual 
average shelf temperature. 

Downstream of the Bering Sea, the 
shallow Chukchi shelf primarily contains 
waters of Pacific origin, although some 
small contributions likely result from 
eastward flows originating in the East 
Siberian Sea (Weingartner et al., 1999). 
The Chukchi’s northward mean flow 
field is bathymetrically steered and 
opposes the prevailing winds; however, 
the instantaneous flow field responds 
strongly to the synoptic wind field both 
in summer open-water conditions and 
in winter months with complete pack 
ice cover (Weingartner et al., 2005b). 
Fronts often occur near Barrow Canyon, 
where bowhead whales and seabirds 
gather to forage on euphausiids in late 
summer and fall (Berline et al., 2008; 
Ashjian et al., 2010; Moore et al., 2010; 
Quakenbush et al., 2010).
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In contrast to the Chukchi Sea, the 
Beaufort Sea has no direct communica-
tion to subarctic waters and is strongly 
influenced by winds, shelf break 
upwelling, and river inputs (Carmack 
and Wassmann, 2006; Dunton et al., 
2006). The Alaskan Beaufort shelf 
receives westerly contributions of 
Pacific origin water advected across the 
Chukchi shelf (Mountain et al., 1976; 
Aagaard, 1984; Pickart, 2004; Spall et al., 
2008) and easterly contributions from 
the Canadian Beaufort (Carmack et al., 
1989; Macdonald et al., 1989; Macdonald 
and Carmack, 1991). An atmospheric 
high-pressure system forces anticyclonic 
motion of the near-surface (< 50 m) 

Figure 3. Cross section of temperatures between the North pacific and the Beaufort Sea in mid-winter (January–april) and at the end of summer 
(September). Distances are relative to the southern end of the transect. Data are from the world Ocean Database 2009 (Boyer et al., 2009) collection of 
hydrographic profiles.

Figure 4. Variation in the extent of the cold pool during recent warm and cold year summers as 
measured by a bottom temperature probe deployed on the NOaa summer bottom trawl surveys. 
The 50- and 100-m isobaths are shown. The straight lines mark boundaries of survey strata.
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basin waters (Coachman and Aagaard, 
1974), resulting in westward flow along 
the shelf break (Figure 1). Shelf currents 
are strongly wind-driven except under 
landfast ice, which covers the inner shelf 
between October and June (Weingartner 
et al., 2009). Flux of shelf water to the 
Arctic Ocean deep basin via canyon 
outflow, eddy transport, and other mech-
anisms likely is biologically important 
(Mathis et al., 2007) and also helps main-
tain the upper Arctic halocline, which 
insulates sea ice from warm subsurface 
Atlantic water (Aagaard et al., 1981). 
Upwelling events in canyons and along 
the shelf break can periodically intro-
duce the underlying (> 200 m depth) 
Atlantic water to the outer Chukchi 
and Beaufort shelves. 

In years of reduced ice extent or early 
retreat, the spring bloom occurs in open 
water over the southern Bering Sea shelf, 
and substantial primary production is 
captured by a pelagic food web (Hunt 
et al., 2002, 2010). With sea ice retreat 
in April and May, much of the spring 
primary production of the central and 
northern Bering Sea is associated with 
ice algae and with an ice-edge bloom 
(McRoy and Goering, 1974; Alexander 
and Niebauer, 1981; Grebmeier and 
McRoy, 1989; Lovvorn et al., 2005; Jin 
et al., 2007). This early spring production 
largely sinks to the bottom and helps 
support a rich benthic fauna dominated 
by invertebrates and small epibenthic 
fishes (Barber et al. 1997; Cui et al., 
2009; Norcross et al., 2010). Seasonal 
ice and strong coupling between pelagic 
and benthic production are character-
istic of shallow, ice-dominated systems 
(Grebmeier et al., 2006b). Ice retreat in 
the Chukchi Sea begins in May or early 
June with melting driven by solar radia-
tion and the advection of relatively warm 

waters from the Bering Sea (Figure 2). 
In contrast, ice retreat in the Beaufort 
Sea occurs between June and August 
and is driven by both solar radiation and 
by lateral advection of heat from both 
the Chukchi shelf (flow from the west) 
and the Mackenzie River outflow (flow 
from the east) (Weingartner et al., 2009). 
Ice-associated primary production plays 
an important (Gradinger, 2009) but still 
not fully appreciated role in total Arctic 
production (Mundy et al., 2009). 

zOOpl aNKTON DiSTriBuTiON
A cluster analysis of the small 
zooplankton taxa (e.g., small cope-
pods such as Pseudocalanus sp. and 
Oithona sp., bivalve and barnacle larvae, 
polychaetes, and small larvacea) grouped 
the Chukchi and northern Bering 
Seas in one cluster and the central and 
southern Bering Seas in another cluster, 
and separated the Beaufort Sea from 
both (Figure 5). The Beaufort, Chukchi, 
and northern Bering Seas were distin-
guished by higher relative abundances 
of meroplankton (particularly bivalvia 
and cirripedia [barnacles]; Figure 6). 
Conversely, copepods became more 
important to the south. In contrast to 
other regions, the Beaufort Sea small 
zooplankton assemblage was dominated 
by larvacea. Overall, the highest total 
abundances for small zooplankton were 
in the northern Bering and Chukchi 
Seas (43,000–45,000 individuals m–3), 
followed by the southern and central 
Bering Sea (9,000–19,000 indi-
viduals m–3) and the Beaufort Sea 
(3,000 individuals m–3).

As with the small zooplankton 
taxa, a cluster analysis of the large 
zooplankton taxa (e.g., large copepods 
such as Calanus marshallae, C. glacialis, 
and Eucalanus bungii, euphausiids, 

amphipods, chaetognaths, and the 
cnidarian Aglantha digitale) grouped 
the Chukchi and northern Bering 
Seas in one cluster and the central and 
southern Bering Seas in another cluster 
(Figure 5). Copepods were common in 
all regions, although less dominant in the 
Beaufort than elsewhere (Figure 7). The 
dominant copepod species shifted and 
distinguished the regions with Calanus 
glacialis dominant in the Beaufort 
Sea, Eucalanus bungii dominant in the 
Chukchi and northern Bering Seas, 
and Calanus marshallae dominant in 
the central and southern Bering Sea. 
In addition, euphausiids were common 
in the northern Bering and Chukchi 
Seas, Aglantha digitale were common 
in the central Bering Sea, and chaeto-
gnaths were common in the Beaufort 
and southern Bering Seas. Crustacean 
zooplankton (large copepods, euphau-
siids, amphipods) made up ~ 90% of the 
total abundances in the northern Bering 
and Chukchi Seas compared to 55–60% 
in the southern and central Bering Sea 
and 30% in the Beaufort Sea. Similar to 
the small zooplankton, the highest total 
abundances for large zooplankton were 
in the northern Bering and Chukchi Seas 
(1,400–2,300 individuals m–3), followed 
by the southern and central Bering 
Sea (100–300 individuals m–3) and the 
Beaufort Sea (15 individuals m–3).

The zooplankton clusters potentially 
were affected by the taxonomic resolu-
tion of the Beaufort Sea data because 
some of the Beaufort Sea identifica-
tions were at a coarser taxonomic scale 
than the other regions. For example, 
gammarid amphipods often were identi-
fied to species in the other regions but 
were grouped in the Beaufort Sea data. 
We reran the cluster analyses of the small 
and large zooplankton data for the other 
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regions (excluding the Beaufort Sea data) 
at the finest taxonomic scale available 
and found the same groupings (Chukchi 
and northern Bering Seas, central and 
southern Bering Sea). An analysis 
based on zooplankton biomass instead 
of abundance may alter these results 
since large taxa, such as Neocalanus 
spp., may gain importance in relation 
to smaller, more numerous copepods, 
such as C. marshallae. Lastly, we note 
that C. glacialis and C. marshallae are 
difficult to distinguish, and work is 
underway to resolve their taxonomy 
(e.g., Nelson et al., 2009).

FiSh DiSTriBuTiON
A cluster analysis of the bottom fish 
taxa separated the Beaufort and 
Chukchi Seas from the Bering Sea 
regions (Figure 5). The Bering Sea was 
distinguished from the Chukchi and 
Beaufort Seas by the presence of Arctic 
cod, which was the most abundant 
bottom fish species north of Bering 
Strait (Figure 8). A group of subarctic 
species, including walleye pollock, 
northern rock sole, and yellowfin 
sole, were common in the southern 
and central Bering Sea. In addition, 
Alaska plaice, a cold-tolerant species 

with antifreeze in its blood (Knight 
et al., 1991), was found throughout the 
Bering Sea and was more abundant in 
the northern Bering Sea. Planktivorous 
species were common in all five 
regions, whereas piscivorous species 
were common only in the southern 
and central Bering Sea. The highest 
total densities for bottom fish were in 
the southern (261 kg ha–1) and central 
(115 kg ha–1) Bering Sea, followed by the 
northern Bering (36 kg ha–1), Beaufort 
(30 kg ha–1), and Chukchi (4 kg ha–1) 
Seas (1 ha [hectare] = 104 m2).

Regions clustered differently for 
surface fish taxa compared to bottom 
fish taxa (Figure 5 [no surface trawl 
surveys have been conducted in the 
Beaufort Sea]). In particular, immature 
(ocean age 1+) chum salmon and juve-
nile sockeye salmon and walleye pollock 
were common species in the southern 
Bering Sea, which distinguished this 
region from the other surveyed regions 
(Figure 9). Pacific herring is unusual in 
being the most common species in all 

Figure 5. results of cluster analysis of regions using the relative abundance of commonly found small zooplankton (Figure 6), large zooplankton (Figure 7), bottom fish 
(Figure 8), surface fish (Figure 9), and seabirds (Figure 10). 
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surveyed regions. Planktivorous species 
were common in all surveyed regions, 
whereas piscivorous species were abun-
dant only in the southern Bering Sea. 
The highest total densities for surface fish 
were in the Chukchi Sea (5.1 kg ha–1) 
followed by the northern (3.5 kg ha–1), 
central (2.1 kg ha–1), and southern 
(1.8 kg ha–1) regions of the Bering Sea.

SeaBirD DiSTriBuTiON
Like the zooplankton taxa, analysis of 
the seabird taxa grouped the Chukchi 
and northern Bering Seas in one cluster, 
the central and southern Bering Sea 
in another cluster and separated the 
Beaufort Sea from both (Figure 5). A 
strong discontinuity in seabird faunas 
between the Beaufort Sea and all other 

regions was driven by the prevalence 
in the Beaufort of benthic-foraging sea 
ducks (common eiders, king eiders, and 
long-tailed ducks) and the Glaucous 
Gull, a large Arctic bird that scav-
enges along the shore and at ice edges 
(Figure 10). Two other species that 
helped define the Beaufort Sea region as 
different were the Arctic Tern and the 

Figure 6. relative densities (number) of 
the most common small zooplankton 
(mean weight < 0.3 mg from 150 µm net) 
from each region, all grouped by common 
taxa in the Bering, Chukchi, and Beaufort 
Seas, august–September 2007 (Bering and 
Chukchi) and august–September 2008 
(Beaufort). Map colors indicate regions: 
Orange = southern Bering Sea. purple 
= central Bering Sea. green = northern 
Bering Sea. Blue = Chukchi Sea. red = 
Beaufort Sea. Bars are standardized against 
the most abundant species in each region. 
Map shows effort, with small dots indicating 
the location of each sampling station. 
Species codes are: OiTh = Oithona sp. 
pSue = Pseudocalanus sp. OCOp = Other 
Copepoda. aCar: Acartia sp. Cala = 
Calanidae (mostly Ci, Cii). larV = larvacea. 
BiVa = Bivalvia. Cirr = Cirripedia. eChi = 
echinodermata. pOlY = polychaeta. liMa 
= Thecosomata and Limacina sp. ClaD = 
Cladocera. CNiD = Cnidaria.

Figure 7. relative densities (number) of the 
most common large zooplankton (mean 
weight ≥ 0.3 mg from 335 and 505 µm nets) 
from each region, all grouped by common 
taxa in the Bering, Chukchi, and Beaufort 
Seas, august–September 2007 (Bering and 
Chukchi) and august–September 2008 
(Beaufort). Bars are standardized against the 
most abundant species in each region. Map 
shows effort, with small dots indicating the 
location of each sampling station. Species 
codes are: haMp = hyperid amphipod. 
Chae = chaetognath. aDig = Aglantha 
digitale. CNiD = Cnidaria. eBuN = Eucalanus 
bungii. CMar = Calanus marshallae. 
eaMp = Epilabidocera amphitrites. Cgla 
= C. glacialis. BraC = Brachyura. Cari 
= Caridea. aNOM = anomura. euph = 
euphausiacea. TraC = Thyanoessa raschii. 
ThYS = Thyanoessa sp. FiSh = fish. euDO = 
Eudorellopsis sp.
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Black Guillemot, both of which have 
a nearly circumpolar distribution and 
forage on small pelagic fish, in particular 
Arctic cod, near the ice edge (personal 
observation of author Hunt). 

The Chukchi and northern Bering 
Seas formed a cluster dominated by 
planktivores, in particular, Least and 
Crested Auklets in the northern Bering 

and Short-tailed Shearwaters in the 
Chukchi (Figure 10). The Least Auklets 
forage primarily on Neocalanus spp. 
copepods at fronts bordering the Anadyr 
Current, and the Crested Auklets and 
shearwaters take mainly euphausiids 
advected into the region in AW and 
BSW (Piatt and Springer, 2003). In the 
northern Bering Sea, auklets from King 

Island, the western end of the north side 
of St. Lawrence Island, and the Russian 
coast all forage at fronts and pycnoclines 
where the copepods are concentrated 
(Hunt et al., 1990; Elphick and Hunt, 
1993). The south side of St. Lawrence 
Island supports both nesting piscivores 
and auklets, presumably because of the 
copepod-rich AW that passes south of 

Figure 8. relative densities (weight) of the 
most common bottom fish from each 
region, all grouped by guilds in the Bering, 
Chukchi, and Beaufort Seas, June–July 2010 
(Bering), august–September 1976 (southern 
Chukchi) and august–September 1991 
(northern Chukchi), and august–September 
2008 (Beaufort). Bars are standardized 
against the most abundant species in each 
region. Map shows effort, with small dots 
indicating the location of each sampling 
station. Species codes are: YFS = yellowfin 
sole. NOrS = northern rock sole. pCOD = 
pacific cod. aKpl = alaska plaice. FlSl = 
flathead sole. ShSC = shorthorn sculpin. 
MBep = marbled eelpout. STFl = starry 
flounder. BrFl = Bering flounder. CNep = 
Canadian eelpout. SDep = saddled eelpout. 
aKSK = alaska skate. aTF = arrowtooth 
flounder. wlpK = walleye pollock. aCOD = 
arctic cod. pher = pacific herring. SCOD = 
saffron cod. rBSM = rainbow smelt. VrSN = 
variegated snailfish.

Figure 9. relative densities (weight) of 
the most common surface fish from each 
region, all grouped by guilds in the Bering 
and Chukchi Seas, august–September 2007. 
Bars are standardized against the most 
abundant species in each region. Map shows 
effort, with small dots indicating the loca-
tion of each sampling station. Species codes 
are: YFS = yellowfin sole. ShSC = shorthorn 
sculpin. SaSh = salmon shark. ChSl = 
chinook salmon. pSNF = pacific sandfish. 
COhO = coho salmon. pher = pacific 
herring. ChuM = chum salmon. piNK = 
pink salmon. SCOD = saffron cod. SOCK = 
sockeye salmon. wlpK = walleye pollock. 
CplN = capelin. rBSM = rainbow smelt. 
aCOD = arctic cod.
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the island (see Piatt and Springer, 2003).
The central and southern Bering Sea 

also formed a cluster, with Northern 
Fulmars and piscivorous kittiwakes 
and murres as the major components 
(Figure 10). Planktivorous Fork-tailed 
Storm Petrels were also an important 
component. Fulmars not only follow 
fishing boats for offal but also forage 
for small squids and zooplankton at 
the surface (Jahncke et al., 2005; Ladd 
et al., 2005). There is some evidence of 
partitioning of the southeastern Bering 
Sea shelf, with surface foragers more 
abundant in the outer shelf and slope 
areas, and subsurface foragers predomi-
nating in the middle and inner shelf 
(Schneider et al., 1986). The highest 
total densities for seabirds were in the 
northern Bering Sea (38 birds km–2), 
followed by the southern and central 
Bering Sea (32 birds km–2 and 18 birds 
km–2, respectively). Average total densi-
ties were slightly lower in the Chukchi 
Sea (13 birds km–2) and much lower in 
the Beaufort Sea (3.3 birds km–2).

BiOgeOgr aphiC prOViNCeS
Three distinct biogeographic provinces 
are apparent during summer from the 
zooplankton, fish, and seabird analyses. 
Based on the most common pattern in 
the cluster analysis, they conform to the 
Beaufort Sea (Beaufort Sea Province), 
the northern Bering (Chirikov Basin; 
Figure 1) and Chukchi Seas (Chirikov-
Chukchi Province), and the southern 
and central Bering Sea (Eastern Bering 
Shelf Province; Figure 5). This pattern 
occurs for three of five taxa examined 
(small and large zooplankton, and 
seabirds). Even though the bottom and 
surface fish clustered differently from 
these three taxa, there were strong simi-
larities in the clustering of regions. For 
bottom fish, the central and southern 
Bering Sea group together, and for 
surface fish, the northern Bering and 
Chukchi group together. The southern 
and northern Bering Sea were distin-
guished for both surface and bottom 
fish. Others also have identified distinct 
bottom fish communities for the 
northern and central Bering Sea regions 

(north and south of Saint Lawrence 
Island; Cui et al., 2009).

The Beaufort Sea Province has a 
narrow shelf and its waters are strongly 
influenced by winds, shelf break 
upwelling, and river inputs (Carmack 
and Wassmann, 2006; Weingartner et al., 
2009). It is largely isolated from the 
input of heat, nutrients, and zooplankton 
from the Bering Sea (Ashjian et al., 
2003, 2010). Arctic zooplankton, some 
of which have been advected from 
the deep basin of the Arctic Ocean, 
are present on the shelf. The Arctic 
zooplankton fauna, fed upon in summer 
by bowhead whales, is abundant in 
large, ice-associated, lipid-rich Calanus 
glacialis (Figure 7). In fall, when euphau-
siids (advected from the Bering Sea) 
are near the region of Barrow Canyon, 
north of Point Barrow, bowhead whales 
may forage where waters of Bering Sea 
origin meet Arctic waters (Ashjian et al., 
2010; Moore et al., 2010). The shelf is 
shallow, and benthic-pelagic coupling 
is strong. Benthic-foraging seabirds are 
common (Figure 10) and include eider 

Figure 10. relative densities (number) of the 
most common seabirds from each region, 
all grouped by guilds in the Bering, Chukchi, 
and Beaufort Seas, June–September 
2007–2009. Bars are standardized against 
the most abundant species in each region. 
Map shows effort, with small dots indicating 
the location of each 3-km transect segment. 
Species codes for seabirds are: 
glgu: glaucous gull. COei: Common eider. 
lTDu: long-tailed Duck. Spei: Spectacled 
eider. Kiei: King eider. NOFu: Northern 
Fulmar. STSh = Short-tailed Shearwater. 
leau: least auklet. Crau: Crested 
auklet. FTSp: Fork-tailed Storm-petrel. 
rNph: red-necked phalarope. rOgu: ross’ 
gull. paau: parakeet auklet. reph: red 
phalarope. Tupu: Tufted puffin. 
BlKi: Black-legged Kittiwake. arTe: arctic 
Tern. TBMu: Thick-billed Murre. 
COMu: Common Murre. Blgu: Black 
guillemot. rlKi: red-legged Kittiwake. 
aNMu: ancient Murrelet.
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ducks that nest on the tundra and later 
move to the shallow coastal waters of the 
Beaufort Sea to forage on benthos while 
molting and refueling for migration 
(Suydam, 2000; Phillips et al., 2007). The 
fish fauna is dominated by Arctic cod 
(Figure 8; Rand and Logerwell, 2010), 
which forages both on ice-associated 
zooplankton and the benthos, and is the 
essential link in the food web between 
zooplankton and piscivorous seabirds 
(e.g., Black Guillemots) and ice-associ-
ated seals (e.g., ringed seals).

The Chirikov-Chukchi Province is 
shallow, has ice-associated plankton 
blooms, and exhibits strong benthic-
pelagic coupling that supports a dense 
benthic community (Grebmeier et al., 
1988; Feder et al., 1994). The biology 
of the Chirikov-Chukchi Province 
is strongly impacted by AW, which 
carries elevated levels of nutrients 
and zooplankton from the outer shelf 
and slope of the Bering Sea (Figure 1; 
Walsh et al., 1989; Piatt and Springer 
2003). The high nutrient content and 
mixing generated as the water converges 
toward Bering Strait results in hot 
spots of production in the northern 
Bering and Chukchi Seas. The advec-
tion of zooplankton in the Anadyr 
Current supports baleen whales that 
forage for large, lipid-rich copepods 
(Neocalanus spp.) and euphausiids. 
The Chirikov-Chukchi Province is also 
the foraging ground for planktivorous 
seabirds (Figure 10) from St. Lawrence, 
King, and the Diomede Islands, and for 
seabird colonies along the Russian main-
land north to the Chukchi Sea (Piatt 
and Springer, 2003). The abundance of 
large crustacean zooplankton is greater 
here in late summer than in the central 
and southern Bering Sea, and many 
seabirds move northward into the region 

in late summer to take advantage of 
this bounty of prey.

Sea ice forms earlier and retreats later 
in the Chirikov-Chukchi Province than 
in the Eastern Bering Shelf Province, 
and as a result, much of the spring 
primary production is associated with 
ice algae and an ice-edge bloom. Much 
of this early spring production sinks 
to the bottom and supports a rich 
benthic fauna dominated by small fishes 
(e.g., shorthorn sculpin, Arctic cod; 
Figure 8) and benthic prey (e.g., bivalves; 
Figure 6 [bivalve larvae]). 

The Eastern Bering Shelf Province is 
subarctic and includes both the southern 
and central Bering regions. Bottom fish 
like walleye pollock, Pacific cod, and 
yellowfin sole are abundant here; their 
densities are several-fold greater than 
in the Chirikov-Chukchi Province. The 
boundary between the southern and 
central Bering regions in waters between 
50- and 100-m depth (middle shelf) is 
marked by the southern edge of the cold 
pool (Figure 3). South of about 60°N, 
the cold pool varies annually in extent 
and intensity. North of this area, the 
cold pool remains through the summer 
months and bottom temperatures vary 
little interannually (Figure 4). The cold 
pool provides a barrier to the northward 
movement of bottom fish in the middle 
shelf. The southern and central Bering 
shelves are linked by northerly shelf 
flows (Figure 1). These currents trans-
port heat, phytoplankton, zooplankton, 
and passively drifting larvae northward. 
The bottom waters of the outer shelf 
remain warm (> 2°C) year-round relative 
to those of the middle shelf at compa-
rable latitudes (< 0°C; Figure 4), and 
many of the subarctic bottom fish species 
are abundant over the northern portion 
of the outer shelf to a latitude of about 

63°N, 3° north of the transition in the 
middle shelf region. For the purposes 
of this paper, we drew the nominal 
boundary between the southern and 
central Bering regions at 60°N, but the 
functional delineation may in fact bend 
northward across the outer shelf, gener-
ally following the line of minimum ice 
extent in March (Figure 1). 

CliMaTe ChaNge
The abundant bottom fish of the southern 
Bering Sea will be blocked from moving 
north by the cold pool, even as climate 
warms, for as long as the winter sea ice 
extent remains unaffected. Over the last 
30 years, climate warming has reduced 
the annual duration of Bering Sea ice 
cover (Danielson et al., 2011) and in the 
future may also reduce the spatial extent 
of seasonal ice cover. With warming in 
this region, fish population distributions 
have shifted within the southeastern 
Bering Sea shelf (Mueter and Litzow, 
2008; Spencer, 2008). Subarctic species 
have been expected to move northward 
as climate warms, and there is evidence 
that some species already have done 
so (Grebmeier et al., 2006a). However, 
the seasonal ice cover of the northern 
Bering Sea will continue to form because 
ocean–to-atmosphere heat fluxes increase 
when the sun’s elevation declines in the 
fall. Thus, cold bottom waters will remain 
a barrier to the northward migration 
of the large bottom fish populations 
and prolific fisheries now typical of the 
southeastern Bering Sea shelf (Stabeno 
et al., provisionally accepted). Most 
species in the southeastern Bering Sea 
are cold intolerant, largely avoid cold 
pool temperatures (< 2°C), and are at or 
near the northern extent of their ranges 
(e.g., walleye pollock, yellowfin sole). 
However, pelagic species, such as salmon, 
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which reside mostly in the upper mixed 
layer, are not restricted by the cold pool 
and may move northward in summer.

The Arctic Ocean and the Bering Sea 
are not closely coupled with respect to 
seasonal ice cover, and summer and 
winter climate patterns north and south 
of Bering Strait can differ and lead to 
surprising contrasts. For example, Arctic 
Ocean summer ice cover diminished to a 
historic low in summer 2007, yet Bering 
Sea ice cover reached a 30-year high in 
the winter of 2007–2008, and Alaskans 
shivered through a cold and wet spring 
and summer of 2008; Bering Sea 
winter and spring conditions remained 
cold for 2007–2010 (Overland et al., 
provisionally accepted). 

In the southern and central Bering 
Sea, pollock currently dominates fish 
biomass, and as a subarctic fish, was 
expected to increase in abundance with 
climate warming (Hunt et al., 2002). 
Instead, during a recent warm period 
(2001–2005), pollock productivity 
fell dramatically, and only during the 
following cold period (2006–present) has 
productivity generally regained previous 
levels. Recent work by the BEST, BSIERP, 
and BASIS programs shows that the 
southern Bering Sea became too warm 
for pollock and lacked a spring ice-
associated bloom for several years in a 
row (Coyle et al., 2008, 2011; Hunt et al., 
2008, 2011). The result was a severe 
decline in the abundance of the large, 
lipid-rich copepod Calanus marshallae 
and the shelf euphausiid Thysanoessa 
raschii, both important prey of juvenile 
and adult pollock (Moss et al., 2009). 
With reduced availability of large, lipid-
rich zooplankton, juvenile pollock were 
undernourished and also exposed to 
greater predation pressure from larger 
fish that, lacking zooplankton prey, 

switched to eating small juvenile pollock 
(Coyle et al., 2011; Hunt et al., 2011). 
When colder conditions returned after 
2006, the biomass of the large crusta-
cean zooplankton gradually increased 
and pollock recruitment improved 
(Coyle et al., 2011; Hunt et al., 2010, 
2011). Thus, counterintuitively, warmer 
conditions can reduce the abundance 
of pollock, a species near the northern 
extent of its range. Statistical analysis of 
long-term data sets (~ 40 yrs), combined 
with population modeling and climate 
scenarios, inform a forecast that indi-
cates that within a few decades, there is 
a 50:50 chance that pollock abundance 
will fall 30% from the current average 
(Mueter et al., 2011).

The waters of the northern Bering 
and Chukchi Seas will continue to freeze 
each winter and thus support some 
species’ resilience in the face of changing 
climate. Spotted seals breed in the Bering 
Sea and are primarily associated with sea 
ice during whelping, nursing, mating, 
and pelage-molting periods, from April 
through June. Most spotted seals spend 
the rest of the year making periodic 
foraging trips from haul‐out sites ashore 
or on sea ice. Although spotted seals 
were petitioned for listing as threatened 
under the US Endangered Species Act 
(ESA) and their abundance is likely to 
decline gradually for the foreseeable 
future, a threatened status was found to 
be unwarranted, primarily because of 
the expectation that the ice season in the 
northern Bering Sea will remain long 
enough that spotted seals can continue 
giving birth and rearing pups in ice-
covered areas (Boveng et al., 2009). 
While there may be more frequent years 
in which ice coverage is reduced, the 
period in which seal reproduction occurs 
will continue to have substantial ice, 

particularly in the northern regions of 
the breeding range (Boveng et al., 2009). 
In years of low ice, it is likely that seals 
will adjust at least in part by shifting 
their breeding locations in response to 
the position of the ice edge as they have 
likely done in the past in response to 
interannual variability. 

In contrast, abundances of other 
ice-associated species are predicted to 
decline more quickly due to differences 
in life history and the timing of their ice 
associations. For example, mammals that 
depend on sufficient snow cover for lairs 
in spring (ringed seals; Kelly et al., 2010) 
or sufficient summer ice as platforms 
for foraging (polar bears; Department 
of the Interior, 2008) are predicted to 
decline, as are various ice-associated 
prey of marine mammals (Tynan and 
DeMaster, 1997). Model forecasts 
indicate that throughout the range of 
ringed seals, there will be substantial 
reductions in snow fall during a time 
of year when snow depth is needed 
to build subnivean (under snow) lairs 
(Kelly et al., 2010). Without the protec-
tion of the lairs, ringed seals—especially 
newborn—may be vulnerable to freezing 
and predation. In the case of the polar 
bear, the key threat also is loss of sea ice, 
the species’ primary habitat. Polar bears 
need sea ice as a platform for hunting, 
for seasonal movements, for travel to 
terrestrial denning areas, for resting, 
and for mating. Summer sea ice extent is 
rapidly diminishing throughout most of 
the Arctic (Comiso, 2002), and the best 
available evidence shows that Arctic sea 
ice will continue to be affected by climate 
change (ACIA, 2005). In general, the 
climate models that best simulate Arctic 
conditions all project significant losses 
of sea ice over the twenty-first century 
(Kelly et al., 2010).
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Forecasting climate change impacts 
upon the ecosystem demands a mapping 
of biogeography and an understanding 
of the oceanography and biota of each 
biogeographic province. Results from 
many research programs are improving 
our ability to understand past changes 
and foresee possible future scenarios. 
As the climate and ecosystems shift, 
our ability to adapt to changing 
conditions will depend foremost on 
our ability to assess and understand 
the underlying linkages.
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