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S p e c i a l  i S S u e  F e at u r e

 effect of
Ocean acidification on

the Speciation of Metals
 in Seawater
abStr act. Increasing atmospheric CO2 over the next 200 years will cause the pH 
of ocean waters to decrease further. Many recent studies have examined the effect 
of decreasing pH on calcifying organisms in ocean waters and on other biological 
processes (photosynthesis, nitrogen fixation, elemental ratios, and community 
structure). In this review, we examine how pH will change the organic and inorganic 
speciation of metals in surface ocean waters, and the effect that it will have on 
the interactions of metals with marine organisms. We consider both kinetic and 
equilibrium processes. The decrease in concentration of OH– and CO3

2– ions can affect 
the solubility, adsorption, toxicity, and rates of redox processes of metals in seawater. 
Future studies are needed to examine how pH affects the interactions of metals 
complexed to organic ligands and with marine organisms.

iNtrOductiON 
With continued emissions of anthro-
pogenic CO2 from the burning of fossil 
fuels, changing land use, and cement 
production, the partial pressure of CO2 
(pCO2) in the atmosphere is expected to 
reach 2000 µatm (Caldeira and Wickett, 
2003) in ~ 150 years. As Figure 1 shows, 
equilibration of atmospheric CO2 with 
the surface ocean will decrease the pH 
of seawater from its current value of 8.1 
to 7.4 (Caldeira and Wickett, 2003). This 
decrease in pH will result in a reduction 

in the concentrations of both hydroxide 
and carbonate (OH– and CO3

2–) in most 
natural surface waters (Figure 2). 

The decrease in carbonate ion 
concentration has spurred considerable 
work on how it affects the produc-
tion of calcium carbonate (CaCO3) by 
calcifying organisms (Orr et al., 2005; 
Gattuso et al., 1998; Kleypas, et al., 1999; 
Langdon et al., 2003). However, few 
studies have considered the effect that 
this lower pH will have on the specia-
tion of metals in natural waters (Turner 

et al., 1981; Byrne et al., 1988; Byrne, 
2002). Both OH– and CO3

2– form strong 
complexes in ocean water with metals 
that are divalent (Baes and Mesmer, 
1976; Byrne et al., 1988; Millero and 
Hawke, 1992) and trivalent (Millero, 
1992; Millero et al., 1995; Cantrell and 
Byrne, 1987; Millero 2001b). These 
anions are expected to decrease in 
surface waters by 82% and 77%, respec-
tively (Figure 2). Such a decrease in 
these ions is expected to change the 
speciation of a number of metal ions in 
seawater (Byrne, 2002; Millero, 2001a,b). 
Metals that form strong complexes with 
OH– and CO3

2– will have a higher frac-
tion in their free forms at lower pH. 
These changes in speciation will also 
increase the thermodynamic (Millero, 
2001a) and kinetic (Millero, 2001b) 
activity of the metals. The lower pH will 
also affect the adsorption of metals to 
organic material. Most organic particles 
in seawater are negatively charged. 
As pH decreases, the surface sites will 
become less available to adsorb metals 
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(Crist et al., 1988; Wilde et al., 2006). 
Most metals are more soluble in acidic 
waters so their concentrations are 
expected to change as well. 

In this review, we examine how the 
decreasing pH of ocean and estuarine 
waters affects the interaction of metals in 
surface waters.

eFFect OF OceaN 
acidiFicatiON ON iNOrgaNic 
Metal SpeciatiON
Trace metals in seawater can be classified 
into five groups according to the domi-
nant inorganic ligand that complexes 
them (Byrne et al., 1988):
a) Hydrolyzed (OH–): Al(III), Fe(III), 

In(III), Th(IV), U(IV)
b) Carbonate (CO3

2–): Cu(II), UO2+,  
Rare Earths, Y(III)

c) Chloride (Cl–): Ag(I), Au(I), Cu(I), 
Hg(II)

d) Free: Mn(II), Fe(II), Co(II)
e) Transition/Mixed: Pb(II), Y(III), 

Sc(III), Ac(III)
Although the metals in the transition/
mixed category could be placed in the 
other categories, they are separated 
because of their unique behavior (Byrne 
et al., 1988; Byrne, 2002). Metals that 
form strong complexes with chloride or 
are mainly in the free form will not be 
strongly influenced by a change in pH, 
but metals that form strong complexes 
with hydroxide and carbonate will 
undergo significant changes in speciation 
as the pH of seawater decreases. 

The ionic Pitzer (1991) interaction 
model can be used to examine the effect 
of pH on metal speciation (Millero and 
Pierrot, 1998, 2002). The model depends 
on the stability constants (β) for the 
formation of complexes in pure water 
(Millero, 1992; Millero and Hawke, 

1992). For hydroxide, the formations of 
complexes are expressed as the stepwise 
hydrolysis of the metal: 

Mn+ + iH2O = M(OH)i
(n – i) + iH+, (1)

where M is the metal, n is the charge 
(2, 3, or 4), and i is the number of 
hydroxides (1 to 4). The hydrolysis 
constants are given by

βi = [M(OH)i
(n – i)] [H+]i / [Mn+], (2)

where brackets denote the concen-
trations. Because the ratio of total 
carbonate, [CO3

2–]T, to free carbonate 
is constant at a constant salinity and 
temperature, the formation constant 

for carbonate complexation can be 
expressed in terms of the total ion 
concentration (Byrne et al., 1988; 
Byrne, 2002):

CO3βk = [M(CO3)k]/([Mn+] [CO3
2–]T

k), (3)

where k is the number of carbonate ions. 
The stability constants needed for the 
various metals were taken from literature 
(Baes and Mesmer, 1976; Cantrell and 
Byrne, 1987; Byrne et al., 1988; Millero 
and Hawke, 1992; Millero, 1992, 2001a). 
A Microsoft Excel program is avail-
able to examine the speciation of metal 
from 0° to 50°C and 0 m to 6 m ionic 
strength (Millero and Pierrot, 1998, 
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Figure 1. The top graph shows the expected emissions of carbon in gtc yr -1. The 
bottom graph shows expected pcO2 in the atmosphere (green line), and the 
change in pH (red line) as a function of time (caldeira and Wickett, 2003).
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2002). It should be pointed out that the 
Pitzer (1991) ionic interaction model 
only considers the formation of strong 
complexes and neglects the formation 
of weak complexes with chloride and 
sulfate (Cl– and SO4

2–). This model esti-
mates the effect of the major components 
of seawater on metal ions and their 
complexes. The resultant activity coeffi-
cients are used to determine the stability 
constants in seawater. This approach is 
different than the methods used in other 
studies (Millero and Hawke, 1992; Byrne 
et al., 1988; Byrne, 2002) and can lead to 
differences in the calculated speciation 
of a given metal. The effect of pH on the 
speciation will not be strongly affected 
because the changes are largely related to 
changes in the OH– and CO3

2– ions. 
Table 1 summarizes the inorganic 

speciation of metals in seawater as a 
function of pH and time (estimated from 
Caldeira and Wickett, 2003). In most 
cases, only species found to contribute 
5% or more are considered. Because 
the pH is expected to decrease to 7.7 
by 2100, the most rapid change will 
occur over the latter half of this century. 
Figure 3 provides an example of the 

changes in Cu2+ as a function of time. 
The effect of changes in CO3

2– on the 
speciation of Cu2+ is representative of all 
metals, although the magnitude of the 
change varies.

Metals that form strong complexes 
with chloride will see little if any change 
in speciation because decreasing the pH 
will not change the chloride concentra-
tion. These metals include Cu+, Cd2+, 
and Hg2+. The decrease in pH is not 
expected to strongly influence metals 
that are predominantly in the free form. 
The metals Co2+, Zn2+, and Mn2+ will 
only increase by a few percent. There 
will be much larger increases in Iron(II) 
and Ni2+ in their ionic forms (4% and 
13%, respectively) because they form 
carbonate complexes to a larger degree 
than the other free metals. 

Metals that are strongly complexed 
with hydroxide include Al3+, Ga3+, In3+, 
and Be2+. These metals form strong 
enough complexes with hydroxide such 
that the change in pH will not cause 
significant increases in their free forms. 
However, there will be a shift to fewer 

hydroxides per metal ion (i.e., Al(OH)4
+ 

to Al(OH)3). The largest change will 
be to the Al(OH)3 complex, which will 
increase by 36%. There will be a small 
but significant increase (~ 5%) in the free 
form of Be2+. 

Metals that form strong complexes 
with carbonate include Cu2+, UO2

2+, 
and the rare earths. These metals will 
be most strongly affected by the change 
in pH, resulting in an increase in their 
free ionic forms. The largest percentage 
increase for carbonate-dominated metals 
is for Cu2+ (30%). This large change is 
significant not only in its magnitude but 
also because free copper is known to be 
toxic to organisms (Steeman-Nielsen 
and Wium-Anderson, 1970; Sunda 
and Ferguson, 1983). The free form of 
the rare earths (RE) from La to Lu will 
increase by 15–24%. The rare earths also 
show a small but significant increase 
in complexes with chloride and sulfate 
(< 10%) as well as an initial increase in 
the fraction of RE(CO3) as RE(CO3)2 
becomes RE(CO3), and then decreases 
in RE(CO3) as it converts to the ionic 
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Figure 2. The decrease in the concentrations of OH– and cO 3
2– ions in 

seawater due to ocean acidification (calculated using the Millero et al., 2006, 
carbonate constants).
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table 1. The fraction forms of metals in seawater as a function of pH and time (caldeira and Wickett, 2003) at 25°c  
and salinity of 35. Species contributing less than 5% are not included. all the calculations are made on the free pH scale.

YEAR 2000 2050 2070 2085 2100 2150 2200 2250

pH 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4

MAJoR SpEciES

H
YD

Ro
x

iD
E 

D
o

M
in

AT
ED

al(OH)3 32.18 37.34 42.76 48.32 53.82 59.10 63.98 68.30

al(OH)4
– 67.53 62.24 56.63 50.81 44.96 39.22 33.72 28.59

ga(OH)3 0.94 1.18 1.48 1.86 2.33 2.92 3.65 4.55

ga(OH)4
– 99.06 98.82 98.51 98.14 97.66 97.08 96.35 95.44

in(OH)3 95.64 96.48 97.14 97.67 98.08 98.39 98.61 98.76

in(OH)4
– 4.29 3.44 2.75 2.20 1.75 1.40 1.11 0.88

be2+ 0.24 0.32 0.40 0.55 0.70 0.91 1.18 1.50

beOH– 59.10 62.36 65.20 67.62 69.65 71.31 72.64 73.68

be(OH)2 27.32 22.90 19.02 15.67 12.08 10.42 8.43 6.79

be(OH)3 2.38 1.58 1.04 0.68 0.45 0.28 0.18 0.11

be(cO3) 13.32 14.40 15.34 16.14 16.80 17.33 17.73 18.00

c
A

RB
o

n
AT

E 
D

o
M

in
AT

ED

cu2+ 7.67 9.64 12.04 14.92 18.32 22.26 26.75 31.76

cuOH+ 4.70 4.70 4.66 4.59 4.47 4.30 4.12 3.88

cucO3 66.98 68.51 69.25 69.14 68.14 66.25 63.50 59.96

cu(cO3)2
2– 18.34 15.26 12.49 10.05 7.95 6.18 4.70 3.55

cuSO4 - - - - - - - -

uO2(cO3)2
2– 13.83 16.47 19.59 23.21 27.34 31.91 37.04 42.46

uO2(cO3) 3
4– 86.14 83.46 80.35 76.70 72.52 67.86 62.71 57.19

la3+ 16.99 20.51 24.40 28.59 32.96 37.39 41.74 45.90

lacO3
+ 56.18 55.15 53.12 50.15 46.42 42.13 37.52 32.82

la(cO3)2
– 19.17 15.31 11.94 9.08 6.75 4.90 3.48 2.42

laSO4
– 3.88 4.68 5.56 6.52 7.52 8.53 9.52 10.47

lacl2+ 2.45 2.95 3.51 4.12 4.75 5.39 6.01 6.61

ce3+ 12.62 15.49 18.79 22.47 26.45 30.63 34.89 39.11

cecO 3
+ 57.15 57.15 56.13 54.09 51.11 47.35 43.03 38.36

ce(cO3)2
– 22.39 18.22 14.48 11.25 8.53 6.32 4.58 3.25

ceSO4
+ 3.51 4.32 5.24 6.27 7.38 8.54 9.73 10.91

cecl2+ 1.93 2.38 2.88 3.45 4.06 4.70 5.35 6.00

pr 3+ 10.59 13.20 16.25 19.72 23.56 27.68 31.97 36.31

prcO3
+ 56.82 57.63 57.43 56.16 53.86 50.62 46.64 42.14

pr(cO3)2
– 26.16 21.58 17.41 13.72 10.56 7.94 5.84 4.20

prSO4
+ 2.78 3.46 4.26 5.17 6.17 7.25 8.38 9.52

prcl2+ 1.64 2.04 2.51 3.05 3.64 4.28 4.94 6.61

Nd3+ 8.45 10.68 13.34 16.44 19.95 23.83 27.99 32.31

NdcO3
+ 56.87 58.47 59.11 58.71 57.21 54.67 51.22 47.04

Nd(cO3)2
– 29.38 24.57 20.11 16.09 12.59 9.63 7.19 5.26

table continued next page…
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Year 2000 2050 2070 2085 2100 2150 2200 2250

pH 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4

c
A

RB
o

n
AT

E 
D

o
M

in
AT

ED
, c

o
n

T.

NdSO4
+ 2.16 2.72 3.40 4.19 5.09 6.08 7.14 8.25

Ndcl2+ 1.30 1.64 2.05 2.53 3.07 3.67 4.31 4.97

pm3+ 6.65 8.52 10.79 13.48 16.60 20.12 23.98 28.08

pmcO3
+ 55.09 57.38 58.82 59.25 58.57 56.80 53.98 50.29

pm(cO3)2
– 33.43 28.33 23.51 19.08 15.14 11.75 8.91 6.60

pmSO4
+ 2.04 2.61 3.31 4.14 5.09 6.17 7.36 8.61

pmcl2+ 1.00 1.28 1.62 2.03 2.50 3.03 3.61 4.22

Sm3+ 5.25 6.82 8.87 11.13 13.94 17.18 20.84 24.83

SmcO3
+ 53.12 56.12 58.40 59.77 60.08 59.00 57.31 54.33

Sm(cO3)2
– 37.87 32.50 27.42 22.61 18.25 14.40 11.11 8.38

SmSO4
+ 1.43 1.85 2.38 3.02 3.78 4.67 5.66 6.74

Smcl2+ 0.78 1.02 1.31 1.66 2.08 2.57 3.11 3.71

eu3+ 4.24 5.56 7.23 9.28 11.76 14.66 17.98 21.67

eucO3
+ 50.82 54.25 57.06 59.05 60.03 59.89 58.60 56.18

eu(cO3)2
– 41.60 36.13 30.76 25.65 20.94 16.71 13.04 9.95

euSO4
+ 1.43 1.87 2.44 3.13 3.96 4.94 6.06 7.30

eucl2+ 0.61 0.80 1.04 1.34 1.69 2.11 2.59 3.12

gd3+ 3.37 4.48 5.91 7.71 9.93 12.59 15.71 19.27

gdcO3
+ 47.53 51.46 54.95 57.77 59.71 60.59 60.31 58.84

gd(cO3)2
– 46.78 41.20 35.61 30.17 25.03 20.33 16.14 12.52

gdSO4
+ 0.86 1.15 1.51 1.98 2.54 3.23 4.02 4.94

gdcl2+ 0.49 0.65 0.85 1.11 1.43 1.82 2.27 2.78

tb3+ 3.64 4.86 6.41 8.37 10.76 13.61 16.93

tbcO3
+ 44.10 48.28 52.18 55.56 58.18 59.85 60.41 59.77

tb(cO3)2
– 51.00 45.42 39.73 34.09 28.66 23.59 18.99 14.95

tbSO4
+ 0.62 0.84 1.12 1.47 1.92 2.47 3.13 3.89

tbcl2+ 0.38 0.52 0.69 0.91 1.19 1.53 1.93 2.40

dy3+ 2.18 2.97 4.02 5.38 7.11 9.27 11.90 15.01

dycO3
+ 40.14 44.47 48.67 52.52 55.76 58.17 59.54 59.75

dy(cO3)2
– 55.81 50.30 44.56 38.74 33.02 27.56 22.51 17.96

dySO4
+ 0.45 0.61 0.83 1.11 1.46 1.91 2.45 3.09

dycl2+ 0.31 0.42 0.57 0.77 1.01 1.32 1.70 2.14

Ho3+ 1.78 2.45 3.35 4.54 6.09 8.04 10.45 13.35

HocO3
+ 36.14 40.48 44.82 48.97 52.66 55.64 57.70 58.63

Ho(cO3)2
– 60.41 55.04 49.33 43.43 37.49 31.70 26.22 21.19

HoSO4
+ 0.38 0.52 0.71 0.96 1.29 1.70 2.22 2.83

er3+ 1.48 2.06 2.84 3.89 5.28 7.05 9.28 11.99

ercO3
+ 32.74 37.01 41.40 45.72 49.73 53.18 55.79 57.37

er(cO3)2
– 64.30 59.13 53.54 47.64 41.60 35.59 29.79 24.37

table 1 continued…



Oceanography december 2009 77

YEAR 2000 2050 2070 2085 2100 2150 2200 2250

pH 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4
c

A
RB

o
n

AT
E 

D
o

M
in

AT
ED

, c
o

n
T. tm3+ 1.21 1.70 2.37 3.29 4.53 6.14 8.20 10.76

tmcO3
+ 28.56 32.64 36.97 41.37 45.65 49.54 52.77 55.09

tm(cO3)2
– 69.00 64.16 58.81 53.04 46.98 40.80 34.67 28.79

yb3+ 1.05 1.49 2.11 2.96 4.10 5.63 7.60 10.09

ybcO3
+ 25.49 29.37 33.55 37.91 42.27 46.37 49.96 52.74

yb(cO3)2
– 72.36 67.81 62.71 57.11 51.11 44.87 38.56 32.38

lu3+ 0.85 1.21 1.72 2.45 3.45 4.80 6.58 8.88

lucO3
+ 21.88 25.45 29.40 33.63 38.02 42.34 46.34 49.74

lu(cO3)2
– 76.41 72.30 67.60 62.33 56.56 50.40 44.00 37.57

TR
A

n
Si

Ti
o

n
/M

ix
ED

pb2+ 2.89 3.29 3.70 4.13 4.56 4.99 5.39 5.77

pbOH+ 4.24 3.83 3.40 3.03 2.66 2.31 1.98 1.68

pbcO3 59.03 54.53 49.72 44.71 39.64 34.65 29.88 25.43

pbcl+ 13.09 14.86 16.74 18.68 20.63 22.54 24.37 26.07

pbcl2 14.09 16.00 18.02 20.10 22.21 24.60 26.23 28.06

pbcl3
– 6.40 7.27 8.19 9.14 10.09 11.03 11.93 12.76

y3+ 9.49 10.65 11.84 13.02 14.17 15.26 16.27 17.18

yOH2+ 14.82 13.21 11.67 10.19 8.81 7.54 6.38 5.35

ycO3
+ 41.51 37.96 34.19 30.34 26.53 22.88 19.47 16.37

ySO4
+ 9.32 10.46 11.63 12.79 13.92 14.99 15.98 16.87

ycl2+ 16.91 18.98 21.10 23.21 25.26 27.20 28.99 30.62

yF2+ 5.32 5.97 6.64 7.30 7.95 8.56 9.12 9.63

c
H

lo
Ri

D
E 

D
o

M
in

AT
ED

cd2+ 20.15 20.17 20.18 20.19 20.20 20.21 20.21 20.22

cdcl+ 43.71 43.75 43.78 44.10 43.82 43.80 43.85 43.86

cdcl2 27.70 27.72 27.74 28.07 27.77 27.78 27.79 27.79

cdcl3
– 7.95 7.95 7.96 7.97 7.96 7.97 7.97 7.97

Hgcl2 11.80 11.80 11.80 11.80 11.80 11.80 11.80 11.80

Hgcl3
– 88.20 88.20 88.20 88.20 88.20 88.20 88.20 88.20

FR
EE

Fe2+ 65.99 70.42 74.57 78.36 81.76 84.75 87.33 89.53

FecO3 32.00 27.78 23.81 20.16 16.89 14.00 11.51 9.39

FeOH 1.40 1.20 1.01 0.84 0.69 0.57 0.47 0.38

Ni2+ 68.29 72.48 76.37 79.91 83.10 85.79 88.15 90.12

NicO3 30.29 26.15 22.30 18.80 15.69 12.97 10.63 8.64

co2+ 92.58 93.81 94.84 95.69 96.39 96.97 97.44 97.82

cocO3 5.30 4.37 3.57 2.91 2.35 1.89 1.51 1.21

coOH 1.45 1.16 0.93 0.75 0.60 0.48 0.38 0.30

Zn2+ 80.58 84.41 87.45 89.85 91.74 93.22 94.38 95.29

ZnOH+ 5.65 4.70 3.87 3.15 2.56 2.06 1.66 1.33

ZncO3 7.16 6.10 5.10 4.20 3.47 2.82 2.28 1.83

Mn2+ 97.34 97.70 98.08 98.36 98.60 98.77 98.93 99.05

table 1 continued…
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form when pH decreases further. This is 
probably only significant from a purely 
chemical standpoint and not from a 
biogeochemical standpoint. 

Lead and yttrium have been placed in 
a separate category, transition or mixed, 
based on their unique behaviors. Lead 
forms significant complexes with both 
chloride and carbonate. As pH decreases, 
the free form of lead will increase by 
approximately 10%, and there will be a 
large increase in its complexation with 
chloride (15% among PbCl, PbCl2, 

and PbCl3). Yttrium has a much more 
complex speciation, forming complexes 
with hydroxide, carbonate, chloride, and 
sulfate (Cantrell and Byrne, 1987). The 
pH decrease will cause yttrium to change 
from a carbonate-dominated metal to a 
chloride-dominated metal. The free form 
will increase by about 7%.

The pH of estuarine waters will also 
be affected by ocean acidification. When 
seawater of low pH (7.4) mixes with river 
water of low pH (6) without inorganic 
carbon, estuarine waters will have a much 

lower pH that may affect biogeochemical 
processes in the estuary (Hofmann 
et al., 2009). Metals such as Cu2+ may 
be more toxic in these waters. Because 
the ocean may be a carbonate source for 
some estuaries, the lower pH of seawater 
will decrease the available carbonate 
(Figure 4). In these areas, this situation 
will result in greater speciation changes 
than those discussed in this paper.

The shift in speciation will also cause a 
change in the solubility of many metals. 
Metal solubility in seawater is a strong 
function of pH. Most trivalent metals 
like Fe(III), Al(III), and As(III) are 
more soluble in acidic and basic solu-
tions with a minimum somewhere in 
between. The location of that minimum 
will determine whether the metal will 
increase or decrease in solubility with the 
expected change in pH. Figure 5 shows 
the solubility of Fe(III) in seawater. At 
the current pH of seawater, Fe(III) is at 
its minimum solubility. Fe(III) solubility 
is strongly influenced by organic ligands 
at a pH near 8 (Liu and Millero, 2002). 
This solubility is much higher than in 
artificial seawater due to the formation 
of strong organic complexes (Liu and 
Millero, 2002). As pH decreases, solu-
bility increases. A decrease in pH from 
8.1 to 7.4 will increase the solubility of 
Fe(III) by about 40%, which could have 
a large impact on biogeochemical cycles 
because iron is an important micro-
nutrient (Brand, 1991). The increased 
solubility along with changes in kinetics 
(discussed later) will make iron more 
available to phytoplankton, which could 
lead to an increase in primary produc-
tion (Martin, 1990). The solubility 
of Al(III) has not been measured in 
seawater. However, because aluminum is 
very strongly hydrolyzed, the solubility 
should be similar to the solubility in 

Figure 3. The expected change in the inorganic speciation of cu(ii) and 
Fe(ii) as a function of time. The Millero et al. (2006) carbonate constants 
were used to calculate the carbonate ion concentration.
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NaCl. The shape of the solubility curve 
as a function of pH is very similar to that 
of Fe(III) except that the minimum is 
shifted to a pH of approximately 5.5. This 
shift will cause a 30% decrease in solu-
bility as the pH changes from 8.1 to 7.4. 
If there is a similar influence of organics 
on Al(III), the actual decrease may be 
less in NaCl solutions (Woosley and 
Millero, in press). New measurements 
are needed to show if this is the case in 
seawater. These changes in solubility 
could influence the distribution and 
cycling of metals in seawater.

Ocean acidification could have 
potentially harmful effects on primary 
productivity by increasing the concentra-
tion of free ionic copper, but acidification 
could also increase the concentrations 
of dissolved iron to stimulate primary 
productivity. The effect of ocean acidifi-
cation on different metals may also affect 
the competition of various metals for 
surface sites (Bruland et al., 1991). Future 
measurements are needed to examine the 
effect of ocean acidification on biogeo-
chemical processes in the ocean. 

eFFect OF OceaN 
acidiFicatiON ON OrgaNic 
Metal SpeciatiON
The inorganic speciation of many 
divalent metals in seawater only 
affects a small fraction of the total 
metal. Significant fractions of the total 
concentrations (most > 99%) of metals 
such as iron, cobalt, copper, zinc, and 
lead are in the form of metal-organic 
complexes (van den Berg, 1984; Hering 
et al., 1987; Sunda and Hanson, 1987; 
Coale and Bruland, 1988; Donat and 
van den Berg, 1992). This observation is 
important, particularly for assessing the 
bioavailability of metals in the surface 
ocean. The role of metals in biological 

processes is quite significant. In the 
surface ocean, the biochemically signifi-
cant metals for microorganisms are 
manganese, iron, nickel, cobalt, copper, 
zinc, and cadmium (Morel et al., 2003). 
These trace metals are needed for the 
growth and survival of photosynthetic 
organisms. Low concentrations of these 

metals, primarily iron, have been linked 
to the paucity of primary producers 
observed in areas of the ocean with 
otherwise high nutrient concentrations 
(Martin and Fitzwater, 1988; Landry 
et al., 1998). Above a certain threshold, 
unique for each organism and metal, 
a number of trace metals are toxic. 

Figure 4. The change in [cO 3
2–] as seawater (S = 35) mixes with river water 

(S = 0) at the present time (pcO2 = 380 µatm) and in 2300 (pcO2 = 
2000 µatm, calculated using the carbonate constants of Millero et al., 2006). 
The river is assumed to have little or no carbonate alkalinity. 
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Figure 5. Solubility of iron(iii) in seawater. From Liu and Millero, 2002
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Copper, cadmium, and lead have all 
been shown to be toxic at sufficient 
concentrations in the marine environ-
ment (Casas and Crecelius, 1994; Paytan 
et al., 2009). Ambient trace metal 
concentrations in the open ocean are 
low, and as a result, marine organisms 
have evolved efficient mechanisms, 
many of which are yet to be character-
ized, of concentrating these metals for 
their needs (Morel et al., 2003). Thus, 
small increases in concentration of 
normally scarce metals often result in 
toxic effects to organisms unaccustomed 
to the higher concentrations (Sunda 
and Huntsman, 1992). This has been 
observed with the free form of Cu(II) 
at concentrations as low as 10-12 M, 
which are reported to be toxic to marine 
phytoplankton (Brand et al., 1986). It 
is important to note that it is the labile 
or free concentration of copper that 
is toxic to marine organisms, not the 
total copper. The fraction(s) of metal(s) 
forming strong complexes with ligands 
may not be thermodynamically or 
kinetically available to organisms. The 
bioavailable, or labile, fraction of the 
total metal concentration is operation-
ally defined with respect to a particular 
organism or analytical measurement, 
such that the labile forms of the metal 
include the free, or uncomplexed, metal 
and weak metal-ligand complexes 
(Schreiber et al., 1985; Gonzalez-Davila 
et al., 1995). Because the speciation of 
many metals is controlled by pH, a more 
acidic ocean will alter the bioavailable 
fractions of these metals. The effect of 
pH on inorganic ligands was discussed 
earlier. In this section, we consider the 
effect of pH on the formation of organic 
complexes with metals. 

A number of researchers have shown 
that many biologically significant metals 

form strong complexes with organic 
ligands in seawater, including:

Copper(II): van den Berg, 1982, 1984; 
Sunda and Ferguson,1983; Kramer 
and Duinker, 1984; Sunda et al., 
1984; Hering et al., 1987; Moffett 
and Zika, 1987; Sunda and Hanson, 
1987; Coale and Bruland, 1988; 
Donat and van den Berg, 1992; 
Croot et al., 1999; Louis et al., 2009

Iron(III): Gledhill and van den Berg, 
1994; Rue and Bruland, 1995; Wu 
and Luther, 1995

Cobalt(II): Zhang et al., 1990; Ellwood 
and van den Berg, 2001; Saito and 
Moffett, 2001

Zinc(II): Bruland, 1989 
Cadmium(II): Bruland, 1992 
Lead(II): Capodaglio et al., 1990
Nickel(II): van den Berg and Nimmo, 

1987; Donat and van den Berg, 1992; 
Gledhill and van den Berg, 1994; 
Gonzalez-Davila et al., 1995; 
Croot et al., 1999; Morel et al., 2003 

Table 2 provides some of the stability 
constants for the formation of metal 
organic complexes (Millero, 2001b). 

The fractional composition of a metal 
complexed by an organic ligand can be 
assessed by evaluating the conditional 

ligand-binding constant, Kc, for the 
relevant ligands in solution. For a metal 
species, M, and a ligand species, L, the 
relationship to Kc is given by:
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where the variables x and y are charges 
on the metal and ligand, respectively, the 
subscript F denotes that the concentra-
tions of each are free (labile), and n is 
the number of ligands complexing the 
metal. As discussed earlier, the inorganic 
carbonate and hydroxide ligands are pH 
dependent, and these, as with most of 
the inorganic metal-ligand complexation 
constants, can be estimated for seawater. 
This allows reasonable estimation of the 
inorganic form for most natural waters. 

Whether the labile fraction of the 
inorganic metal complexes is available 
in nutrient form or contributes to a 
toxic response is difficult to determine 
and is not consistent for all organisms 
(Croot et al., 1999). Metal-organic 
complexes, however, are for the most 
part sufficiently strong that this frac-
tion of the total metal concentration is 
rendered nonlabile and cannot interact 
with organisms (Schreiber et al., 1985; 

table 2. conditional stability constants for metals in seawater (Millero, 2001b)

Metal [M] [L] log Kc

cu(ii) 1–10 nM 2–60 nM 8.5

Zn(ii) 0.1–2 nM 1.2 nM 12

cd(ii) 2–800 pM 100 pM 12

pb(ii) 17–49 pM 200–500 pM 11

Ni(ii) 1.7–4.3 nM 2–4 nM 17–19

co(ii) 10–103 pM 9–83 pM 11–16

Fe(iii) 0.2–8 nM 0.4–13 nM 19–23
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Gonzalez-Davila et al., 1995). Using 
the stability constants for the formation 
of organic complexes, it is possible to 
examine the competition of the inor-
ganic and organic complexes to assess 
the fractionation of a metal. This can be 
done if the organic complexing constants 
and concentration of the ligand are 
known. A number of scientists (given 
above) have studied the formation of 
Cu(II) organic complexes. Most studying 
Cu(II) speciation have observed two 
ligand classes, L1 and L2, in seawater 
collected from a number of locations. 
Table 3 tabulates the total concentra-
tion of the strongest ligand [L1]T and 
its values, determined by a number of 
scientists, along with the concentrations 
of Cu(II)T and the conditional stability 
constants Kc. The fraction of the free 
ligand (αLF) and free copper (αCuF) can 
be estimated from the following:

αLF = 1
(1+ KcαCuF[Cu]T)  

(5)

αCuF = 1
(1+ KcαLF [L]T)

 
(6)

Table 3 provides the iterative values of 
αCuF and αLF determined from these 

equations. The free concentrations of 
copper [Cu]F vary from 0.1 to 1.1 pM at 
a pH equal to 8.1. 

The effect of pH on the speciation of 
metal organic complexes in the marine 
environment is not as well character-
ized as the inorganic ligands due to 
the nonhomogenous composition and 
unknown structures of the organic 
ligands. Characterizing organic mate-
rial capable of complexing metals in the 
marine environment has proven to be a 
daunting analytical task, but a number of 
scientists have made progress (Dittmar 
and Paeng, 2009; Sleighter and Hatcher, 
2007). They find that marine organic 
material has similar properties to the 
better-characterized metal complexing 
organics in freshwater systems (Ritchie 
and Perdue, 2003). It is highly likely that 
the marine dissolved organic material 
that can complex metals will be a func-
tion of pH. This relationship is due to 
the presence of phenolic and carboxylic 
functional groups present on organic 
material that may be responsible for 
the chelation of metals. These moieties 
exhibit a charge dependence that is a 
function of pH, and each bind metals 

with varying degrees of strength.
There has been little comprehensive 

work assessing the effect of pH on the 
stability constants for the formation of 
organic complexes. Louis et al. (2009) 
recently characterized the acid-base 
properties of dissolved organic material 
in waters collected off the southern coast 
of France. They report a lower Cu(II) 
organic complex constant (log Kc = 9.9) 
than found by other researchers. They 
did, however, determine the effect of pH 
on the major L1 ligand. Figure 6 shows 
the fractional composition of the L1 
ligand as a function of pH using their 
acid dissociation constant of pKa = 8.6. 
Between pH 8.1 and 7.4, the concentra-
tion of this ligand decreases by 25%. 
We used this decrease in concentration 
of L1 to estimate the effect of pH on 
the speciation of Cu(II) in seawater 
(see Table 3). The levels for free copper 
may surpass the 1 pM threshold, 
levels at which some organisms have 
exhibited a toxic response. It should 
be emphasized, however, that this esti-
mate is very rudimentary. Its primary 
purpose is to demonstrate the need for 
empirical inquiry into the area of the 

table 3. literature data for cu(ii) complexation with l1 and estimated values of the free [cu(ii)]F at pH 8.1 and 7.4

location
[cu]T
(nM)

 [l]T 
(nM) log Kc

pH 8.1*

[cu]F (pM)
pH 7.4*

[cu]F (pM) Reference

Ne pacific 0.59 1.6 11.8 1.1 1.7 coale and bruland (1988)

biscayne bay 2.7 5.1 12.0 1.1 2.4 Moffett and Zika (1987)

Montauk point 5.9 20 11.7 0.84 1.3 Hering et al. (1987)

Narragansett bay 21 35. 12.3 0.70 1.9 Sunda and Hanson (1987)

indian Ocean 1.7 3.1 12.6 0.42 1.2 donat and van den berg (1992)

North Sea 3.2 16. 12.4 0.10 0.14 donat and van den berg (1992)

South atlantic 2.3 11 12.2 0.17 0.24 van den berg (1984)

balaguier bay 14.8 138 9.9 15.1‡ 20.9‡ louis et al. (2009)

* estimated values using pka = 8.6 (louis et al., 2009) for l1.  
‡ When a value of log kc of 12 is used to compute [cu]F , the pH 8.1 and 7.4 values are 0.12 and 0.17 nM, respectively.
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pH dependence of organic speciation of 
metals in seawater. Because upwelling 
waters frequently have a similarly 
lower pH due to ocean acidification, 
metal complexing studies in these areas 
may be useful in studying the organic 
speciation of metals. 

Few similar studies are available for 
other metals, but a number of studies 
show that Fe(III) forms strong complexes 
with organic ligands in seawater 
(Gledhill and van den Berg, 1994; Rue 
and Bruland, 1995; Wu and Luther, 
1995). Because lower pH values increase 
the solubility of Fe(III) in seawater (Liu 
and Millero. 2002), it might be inferred 
that these Fe(III) organic complexes 
may also be affected by ocean acidifica-
tion. More work is needed to determine 
the effect of pH on other metal organic 
ligands in seawater. 

eFFect OF OceaN 
acidiFicatiON ON r ate 
prOceSSeS
Chemical reaction rates are also affected 
by pH changes (Millero, 2001b), 
including the oxidation and reduc-
tion of metals (Cu(I), Cu(II), Fe(II), 
Fe(III), Cr(III), Cr(IV)), and of sulfur 

compounds (H2SO3, H2S). Changes in 
pH also affect photochemical processes 
such as the production of O2

–, HO2, and 
H2O2. In this section, we examine how 
pH changes affect kinetic processes 
in surface waters. We focus on the 
possible effects of acidification on the 
rates of reduction and oxidation (redox) 
processes concerning Cu(I)–Cu(II) 
and Fe(II)–Fe(III), the lifetimes of 
the superoxide radicals HO2 and O2

–, 

and H2O2 production.
The kinetic rate constant for the 

reduction of Cu(II) to Cu(I) is a function 
of pH because the reaction is slower at 
high concentrations of the carbonate 
ion (Figure 7). As the ocean becomes 
more acidic, reduction of Cu(II) will 
increase, as the ionic form of Cu(II) is 
reduced faster than the Cu(II) in either 
the CuCO3

o or Cu(OH)+ species (Millero 
et al., 1991; Millero, 2001a). The effect of 
higher concentrations of Cu(I) in surface 
waters on biological systems is currently 
unknown. The oxidation of Cu(I) with 
H2O2 is not expected to be strongly 
dependent on acidification, as the oxida-
tion rates are not strongly affected by 
pH (Moffett and Zika, 1983; Sharma 
and Millero, 1988). 

As discussed earlier, iron in surface 
waters is needed for primary produc-
tivity. For phytoplankton to use iron, it 
must be dissolved (Davies, 1990; Rich 
and Morel, 1990), making the bioavail-
ability of iron a function of its solubility 
and oxidation state (Millero, 2001a). 

Figure 6. The effect of pH on the fraction (α) of the natural organic ligand that complexes cu(ii) 
in seawater (louis et al., 2009).

Figure 7. The rate constant for the reduction of cu(ii) with H2O2 as a function 
of the fraction of the carbonate ion.
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Photochemical processes in ocean 
surface waters produce a number of 
free radicals that can change the oxida-
tion state of a number of metals. The 
free radical O2

– is produced by the 
adsorption of organic chromophores 
(Zika et al., 1985):

 Org + hv = Org+ + e– (7)

 e– + O2 = O2
–  (8)

 O2
– + H+ = HO2. (9)

Increasing evidence also shows the 
production of HO2 by a wide range of 
microorganisms (Rose et al., 2008). 
Millero (1987) estimated the overall rate 
constant for the disproportionation of 
the superoxide molecule as a function 
of pH. Assuming a constant value for 
[HO2

–]T, the half-life of the superoxide 
decreases by 20% at pH = 7.4. A decrease 
in concentration of the superoxide 
molecule would affect the redox equi-
librium of biologically important trace 
metals, as it is important in the reduction 
of organically complexed Fe(III) (Rose 
and Waite, 2005) and redox reactions 
of organic and inorganically complexed 
Cu(II) and Cu(I) (Zafiriou et al., 1998; 
Voelker et al., 2000). 

The HO2 radical can dispropor-
tionate and form hydrogen peroxide 
(Bielski, 1978):

 HO2 + HO2 = H2O2 + O2. (10)

The rate of this reaction is a function 
of pH (log k = 12.28 - 1 pH; Millero, 
1987). The concentration of HO2 at a 
pH equal to 7.4 will be decreased by 
30% compared to the value at a pH 
equal to 8.1. The photochemical produc-
tion of the superoxide radical, HO2 or 
O2

–, can reduce Cu(II) and Fe(III) in 
surface waters: 

 Cu2+ + O2
– = Cu+ + O2 (11)

 Fe3+ + O2
– = Fe2+ + O2. (12)

It can also oxidize dissolved organic 
material in seawater (Goldstone and 
Voelker, 2000). The destruction of 
the HO2 radical in surface seawater is 
thought to be affected by the concen-
tration of Cu(II) (Zafiriou et al., 1998; 
Voelker et al., 2000). The increase of free 
Cu2+ in surface waters due to a decrease 
in the pH may increase the destruction 
of the radical. 

The peroxide formed from the dispro-
portion of HO2 can also react with Fe(II) 
and Cu(II):

Fe2+ + H2O2 = Fe3+ + OH· + OH– (13)

Cu2+ + H2O2 = Cu+ + HO2 +H+. (14)

The concentration of Fe(II) in surface 
seawater is controlled by its oxidation 
with O2 (Millero et al., 1987): 

 Fe2+ + O2 = Fe3+ + O2
–. (15)

As Figure 8 shows, the oxidation of 
Fe(II) is a strong function of pH. At 
25°C, a decrease in pH from 8.1 to 
7.4 will increase the half life of Fe(II) 
in seawater from 1 to 24 minutes 
(Millero et al., 1987). So, the decrease 
in pH of ocean waters should increase 

dissolved Fe and make it more avail-
able for primary production. In a CO2 
manipulation microcosm experiment, 
Breitbarth et al. (2009) showed changes 
in Fe(II) oxidation that agree with 
our expectations. 

The effects of the lowering of pH 
on the rates of enzymatic and other 
organic reactions in ocean waters are 
not well known. Because much of the 
dissolved organic material in seawater 
consists of –OH and –COOH groups 
that are affected by pH, it might be 
expected that the rates are also affected. 
Additional research is required to further 
characterize the effects ocean acidifica-
tion will have on the kinetics of trace 
metals and the overall implications on 
biogeochemistry.

SuMMary
Ocean acidification will have an impact 
on the thermodynamics and kinetics of 
metals in seawater. The changes in the 
speciation of metals due to the lower pH 
will result in changes in the behavior and 
fate of metals in seawater. These changes 
could possibly affect the availability 

Figure 8. The calculated increase in the half life of Fe(ii) as a function of pH at 25°c.
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and toxicity of metals on marine organ-
isms. We suggest how these pH changes 
can affect thermodynamic and kinetic 
processes in seawater. The impact these 
changes have on biogeochemical cycles 
in the ocean requires further study. 
Coastal upwelling and oxygen minimum 
zones, which already have a pH around 
7.4 (Feely et al., 2008), would be useful 
areas to study in order to better under-
stand how metals will behave under 
future ocean acidification scenarios. 
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