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Modeling and Prediction of Marine 
	 Microbial Populations in the Genomic Era

By R a l e i g h R .  H o o d,  E dwa r d A .  L aw s ,  M i c h a e l  J .  F o l low s ,  a n d Davi d A .  S i ege   l

The articles in this special issue attest to 

the fact that we are in the early stages of 

a scientific revolution in marine micro-

biology that is being fueled by vast quan-

tities of new information derived from 

advances in microbiological techniques 

and genomic studies. Many new spe-

cies, metabolic processes, and pathways 

in marine systems have recently been 

discovered. Subtle metabolic variations 

within and among species have also been 

revealed, and previously known genes 

and metabolisms have been detected in 

new environments. And this is just the 

tip of the iceberg. Using genome shot-

gun sequencing techniques, Venter et 

al. (2004) report finding 148 previously 

unknown bacterial phylotypes and over 

1.2 million previously unknown genes, 

including more than 782 new rhodop-

sinlike photoreceptors (Figure 1)—just 

from surface-water samples from the 

Sargasso Sea (see also more recent arti-

cles by Rusch et al., 2007, and Yooseph, 

et al., 2007). The overwhelming chal-

lenge we face is how to make sense of all 

of this emerging information. What role 

do all these new genes and proteins play 

in driving marine-ecosystem dynamics 

and biogeochemical cycles? Which are 

important and which are not? What role 

are they likely to play in the evolution 

of marine microbial communities, how 

might they have influenced global bio-

geochemical cycles over Earth’s history, 

and how might they do so in the future? 

Marine-ecosystem and biogeochemi-

cal modeling techniques provide one 

possible approach to answering some of 

these questions. Traditionally, these are 

prognostic numerical models composed 

of a set of state variables representing 

various ecosystem and biogeochemical 

constituents with exchanges between 

them specified by a set of partial dif-

ferential equations (Hood and Coles, 

in press). These are the primary tools 

that we currently employ to synthesize 

emerging information and fold it into 

a coherent framework that can be used 

for prediction. Efforts to develop bio-

geochemical models that can be used 

to predict how the oceans will respond 

to global warming are a prominent 

example (e.g., Moore et al., 2002a, 2002b, 

2004). These models attempt to encap-

sulate, in a mechanistic framework, the 

state of our knowledge of the marine 

ecosystem and of microbial dynam-

ics that control marine biogeochemical 
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> Chapter 11.  Modeling and Predic tion
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cycles. Such models have been gainfully 

applied as exploratory and predictive 

tools. However, it is not clear that these 

traditional modeling approaches will be 

sufficient in the face of all this emerg-

ing microbiological and genomic infor-

mation; such models need to be “told” 

exactly what organisms and metabolisms 

exist in the ocean, and the rate coeffi-

cients that govern their parameteriza-

tions must be specified a priori. As such, 

they cannot tell you what is important 

and what is not. Moreover, these models 

cannot “evolve” over time and cannot 

therefore account for changes in spe-

cies composition and metabolic capac-

ity that may happen in association with 

changing climate and environment. 

Given the emerging realization that 

there are vast and previously unknown 

quantities of genetic information in 

the ocean, it would appear that these 

deficiencies are serious. 

We argue that if marine-ecosystem 

models are to be in the vanguard of the 

ongoing revolution in microbial ocean-

ography, there need to be radical changes 

in modeling approaches and strategies. 

The challenge we face is daunting. Our 

conceptual understanding is evolving 

much faster than model development. 

This is starkly illustrated by the fact that 

even though hundreds of new bacte-

rial phylotypes have been discovered in 

recent years, most large-scale biogeo-

chemical model formulations still do not 

include explicit representations of bacte-

ria (Hood et al., 2006). We can anticipate 

that the accelerating rate of discovery 

will tend to encourage more rapid model 

development, but this poses a dilemma 

for the modeling community because 

it will also accelerate the current trend 

toward the development of increasingly 

complex and potentially intractable 

model formulations (see Doney et al., 

2004, and Rothstein et al., 2006, for addi-

tional discussion).

In a perfect world, modeling and 

theory should help lead the way as we 

venture into this brave new world of 

microbial and genomic discovery in 

the twenty-first century. At the very 

least, these tools should be employed 

in combination with field and labora-

tory studies to help make sense of all 

this emerging information. To achieve 

this integration, we will have to aug-

ment our traditional ecosystem and 

biogeochemical modeling approaches 

with new methods. We argue that these 

methods should include (1) applica-

tion of overarching ecological theories 

that can help guide model development, 

(2) development of alternative modeling 

approaches and analysis methods that 

can overcome some of the limitations 

Figure 1. Phylogenetic tree of rhodopsinlike genes in the Sargasso Sea along with all homologs in 
GenBank. The sequences are colored according to the type of sample in which they were found: 
blue, cultured species; yellow, sequences from uncultured organisms in other environmental sam-
ples; and red, sequences from uncultured species in the Sargasso Sea. The tree is also divided into 
proposed distinct subfamilies of sequences on the right. Figure and caption modified from Venter et 
al. (2004). Reprinted with permission from AAAS
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of traditional models, and (3) the adop-

tion of an entirely new perspective on 

marine microbial interactions that can 

provide more realistic conceptualiza-

tions and models of detailed microbial 

community interactions.

Ecological Theory and 

Fundamental Laws

In contrast to physical oceanographers, 

marine-ecosystem and biogeochemical 

modelers have no overarching theory 

to guide research (i.e., we do not have 

anything equivalent to the Navier-Stokes 

equations that provide a framework for 

the development of models with vary-

ing levels of simplification). Ecologists 

have hypothesized for many years that 

the evolution of biological systems is 

driven by fundamental principles or 

forces. Lotka (1922), for example, argued 

“…that natural selection tends to make 

the energy flux through the system a 

maximum, so far as compatible with 

the constraints to which the system is 

subject.” Odum (1983) expanded on 

Lotka’s ideas and formulated the “maxi-

mum power principle,” suggesting that 

systems prevail that develop designs 

that maximize the flow of useful energy. 

Odum argued that theories and corol-

laries derived from the maximum power 

principle can explain much about the 

structure and processes of ecosystems. 

Although the maximum power prin-

ciple has drawn some sharp criticism 

(e.g., Fenchel, 1987), these are important 

early examples of efforts to formulate 

laws that can provide an overarching 

framework for ecological studies and 

modeling that could be used to help us 

understand the role of newly discovered 

microorganisms and metabolic processes 

in marine-ecosystem dynamics and 

biogeochemical cycling.

A number of authors have explored 

the implications of using various goal 

functions to help guide the development 

of ecosystem models. Cropp and Gabric 

(2002), for example, used a genetic algo-

rithm to simulate the adaptation of the 

biota in a simple linear food chain con-

sisting of a limiting nutrient, autotrophs, 

and heterotrophs. They also concluded 

that ecological systems exist within the 

constraints of thermodynamic laws that 

prescribe the transfer of energy. But their 

simulations suggested the hypothesis 

that, within the constraints of the exter-

nal environment and the genetic poten-

tial of their constituent biota, ecosystems 

will evolve to the state most resilient to 

perturbation (i.e., toward “maximum 

resiliency”). Interestingly, in their simple 

linear food chain, the selection pres-

sures suggested by Lotka (1922) and 

Odum (1983) led to essentially the same 

system behavior as did maximum resil-

iency. Fath et al. (2001) likewise noted an 

equivalency of system behavior governed 

by seemingly disparate ecological goal 

functions. Although there are counter 

examples, such as Månsson and McGlade 

(1993), thermodynamic approaches 

have met with considerable success in 

estimating rate parameters in real eco-

systems (Jorgensen and Straskraba, 

2000). We suggest that thermodynamic 

goal functions like these can provide a 

means to estimate unknown rates and 

rate parameters, identify organisms or 

processes that might be missing in a 

model, and providing a means to guide 

community evolution under changing 

environmental conditions. 

For example, Laws et al. (2000) 

used the simple box model depicted 

in Figure 2 to explore the implications 

of applying a resiliency goal function, 

based upon concepts developed by Steele 

(1974) and May (1974), to the regula-

tion of sinking carbon export produc-

tion in open-ocean ecosystems. Prior 

to the publication of that model, the 

seminal paper by Eppley and Peterson 

(1979) provided the conceptual basis for 

our understanding of the regulation of 

export production in the open ocean. 

Based on empirical observations, Eppley 

and Peterson (1979) reasoned that the 

ratio of new production (Dugdale and 

Goering, 1967) to total primary produc-

tion (the f-ratio) could be described by a 

hyperbolic function of primary produc-

tion. In subsequent years, accumulating 

evidence made the relationship postu-

lated by Eppley and Peterson look more 

		W  e argue that the traditional modeling 
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like a scatter diagram than a hyperbola. 

It seemed apparent that something was 

missing in our understanding of the 

mechanisms that regulate export pro-

duction (see also new findings on export 

flux variability reported in Buesseler 

et al., 2007). The Laws et al. (2000) 

study was an effort not only to estimate 

unknown rate parameters but also to 

identify processes that might be miss-

ing in the Eppley and Peterson (1979) 

model, and develop a means to guide 

changes in pelagic ecosystem struc-

ture and biogeochemical cycling under 

changing environmental conditions. 

Most of the parameters in the Laws 

et al. (2000) model can be assigned val-

ues based on information in the litera-

ture or are otherwise constrained by the 

assumption of steady state. However, 

four parameters—the fractional growth 

rates of the large phytoplankton, flagel-

lates, filter feeders, and carnivores—are 

unconstrained. These growth rates can 

be determined by selecting values ran-

domly with the criterion for admissibil-

ity being a stable steady state such that 

the characteristic time constant asso-

ciated with the return to equilibrium 

must be shorter than a specified value 

(following May, 1974). This tuning exer-

cise not only determines these four free 

parameters, but, in the case of Station 

ALOHA, also leads to the conclusion 

that the export ratio most likely to be 

observed lies toward the low end of the 

spectrum of possible values, a result con-

sistent with field studies (Emerson et al., 

1997). Furthermore, when the predic-

tions of the model are examined over a 

wide range of conditions, the conclusion 

is that f-ratios are a function of not only 

primary production, as postulated by 

Eppley and Peterson (1979), but also of 

temperature (Figure 3). 

The stability goal function provides a 

means of simulating changes in pelagic 

community structure in time and/or 

space in the Laws et al. (2000) model 

because it provides an independent cri-

terion for reparameterizing the model 

under changing physical conditions 

without resorting to comparisons with 

observations and retuning. Specifically, 

the Laws et al. (2000) model was param-

eterized to maximize the resiliency of the 

steady-state solution at each point on a 

global grid in response to large spatial 

variations in production and tempera-

ture. This spatially explicit parameter-

ization changes the size structure of the 

primary producers and the length of the 

food chain in the model, and therefore 

the amount of export versus recycling 

of organic matter. Thus, the commu-

nity structure and the f-ratio “evolve” 

to function properly in the local envi-

ronment. As a result, the model does a 

remarkably good job of predicting spa-

tial variations in production and export. 

In theory, it should also be possible to 

use the same approach for simulating 

temporal evolution in community struc-

ture, production, export, and perhaps 

many other ecosystem attributes. This 

could, for example, provide a means to 

allow a model to reorganize itself season-

ally and/or evolve in response to global-

warming-induced changes in oceanic 

temperatures and primary production. 

The success of the Laws et al. (2000) 

model in explaining the pattern of 

f-ratios over a wide range of conditions 

also lends support to May’s (1974) pos-

tulates concerning ecosystem resiliency. 

External Nutrient

Inorganic 
 Nutrient
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Bacteria
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Detrital 
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Figure 2. Feeding and excretion relationships in a model pelagic food web in which photosyn-
thetic production is partitioned between small and large phytoplankton cells. DOM and POM 
are dissolved and particulate organic matter, respectively. Redrawn from Laws et al. (2000)
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It would be misleading, however, to 

think that resiliency is the sole deter-

minant of ecosystem structure and 

function. A wide variety of constraints, 

including genetic plasticity and the 

physical (e.g., temperature) and resource 

constraints noted by Patten (1993), will 

combine to limit the ability of biological 

communities to adapt to their environ-

ments. Identifying the right mix of con-

straint and adaptability within models of 

microbial communities remains a chal-

lenging task and a significant limitation 

on our ability to predict the composition 

and functionality of these communities 

in a changing world. 

Large-Scale , Three-

Dimensional Models

A long-standing challenge in modeling 

marine ecosystems and biogeochemical 

cycles is how to represent the diversity 

of the ecosystem, the spatial and tem-

poral variations of community struc-

ture, and their impacts on nutrient and 

carbon fluxes. The application of new 

microbiological and genomic techniques 

has revealed that there is much greater 

diversity in marine microbial communi-

ties than previously thought, a discovery 

that has magnified this challenge tre-

mendously. This diversity is currently 

addressed in ocean biogeochemistry 

models by resolving, to varying degrees, 

the size structure of the microbial 

community at different trophic levels 

(e.g., by incorporating multiple size 

classes of phytoplankton and zooplank-

ton) and, more recently, through the 

inclusion of biogeochemical “functional 

groups,” where the groups are defined 

according to specific, biogeochemi-

cally relevant functionality (e.g., the 

formation of a silicious frustule in the 

case of diatoms, calicification by cocco-

lithophorids like Emiliania huxleyi, and 

nitrogen fixation by cyanobacteria like 

Trichodesmium) (Hood et al., 2006). 

These models have provided signifi-

cant insight into the interactions of the 

phytoplankton community and biogeo-

chemical cycles, but several major hur-

dles remain. The specification of appro-

priate functional groups and diversity 

for a particular problem is difficult and 

somewhat arbitrary. In addition, most 

biogeochemically motivated models of 

marine microbes focus on photo-auto-

trophs, whereas much less attention has 

been paid to the role of heterotrophy 

and even less to mixotrophy. The latter 

are important determinants of commu-

nity structure through top-down con-

trol effects, and they are also important 

components of some biogeochemical 

functional groups (e.g., foram-mediated 

calcification). Of particular concern in 

this context is the fact that most biogeo-

chemical models that are being used for 

regional and global-scale applications 

do not include explicit representations 

of bacteria, and those that do are highly 

simplified, representing bacteria and any 

related groups (e.g., archaea) as a single, 

generic state variable. Another problem 

is that organism types in these models 

are differentiated by rate constants regu-

lating physiological processes that are 

poorly constrained (i.e., they are derived 

from laboratory culture studies, but 

these are relatively scarce and may not 

include the appropriate organisms, and 

the broad functional groups may not be 

characterized easily by a single param-

eter value). Finally, there is the overarch-

ing issue of dealing with models that are 

becoming increasingly complex and the 

question of whether these will ultimately 

give rise to better predictive skill. 

In the vast majority of marine-

ecosystem and biogeochemical models, 

the representation of key physiological 

processes—for example, the dependence 

of phytoplankton growth on light, tem-

perature, and nutrient availability—are 

Figure 3. Calculated ratios as a function of temperature and net  
photosynthetic rate calculated from the Laws et al. (2000) model.  
From Laws et al. (2000)
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empirical, using a few simple functional 

relationships (e.g., Holling’s type I, II, 

and III grazing response curves and 

Q
10

-type temperature dependence 

of metabolic function), constrained 

where possible by laboratory culture 

and chemostat studies (e.g., Eppley and 

Coatsworth, 1968; Eppley, 1972). These 

functional relationships are also typi-

cally fixed in the sense that adaptation to 

changing local conditions is not allowed 

(i.e., photo and nutrient acclimation). 

Thus, compared to real-world ecosys-

tems, most marine-ecosystem and bio-

geochemical models are quite rigid in 

terms of their physiological responses. 

This rigidity may be particularly prob-

lematic in efforts to apply these mod-

els to assess how plankton community 

composition and biogeochemical cycles 

might be impacted by past or future 

climate change (i.e., we can anticipate 

that they will tend to predict changes 

in species compositions and chemical 

cycling that are too abrupt because the 

plankton in these models cannot adapt 

to changing conditions). There has, 

however, been significant progress in the 

last decade toward the development of 

parameterizations of microbial physiol-

ogy that are informed and underpinned 

by cellular- and molecular-scale models 

(e.g., Geider et al., 1996; Flynn et al., 

1997) (Figure 4). In these studies, the 

NO3
-

NH4
+

NT NO3P

AT NH4P

NNiR

GLNP

Q

Promotion

Regulation

Effector

NR

GS

AA

-ve

-ve
or

+ve

+ve

Figure 4. Schematic diagram of 
the Flynn et al. (1997) mecha-
nistic nitrate and ammonium 
uptake model. NO3P, NH4P, 
GLNP, and Q are internal 
pools of nitrate, ammonium, 
glutamine, and other organic 
cellular N, respectively. NNiR 
is nitrate-nitrite reductase, 
and GS glutamine synthetase 
activities. NT and AT are nitrate 
and ammonium transporters, 
respectively. NR describes the 
process of nitrate reduction 
through to ammonium, and 
AA the synthesis of amino acids 
and all other nitrogenous com-
pounds from GLN. “Promotion,” 
“regulation,” and “effector” are 
used in general terms, with no 
specific biochemical meaning, 
indicating positive, negative, 
or complex feedbacks, respec-
tively. Reprinted from Flynn et 
al. (1997, Figure 2)

environmental sensitivities of particular 

cell types are represented dynamically, 

with predictive power based in an under-

standing of intracellular biochemistry 

and metabolic pathways. Further devel-

opment and incorporation of these kinds 

of physiological “submodels” will not 

only give rise to more flexible ecosystem 

and biogeochemical responses, but they 

should also facilitate incorporation of 

new metabolic pathways and processes as 

they are discovered. 

A major caveat, though, is that all of 

this is leading us further down the path-

way of developing increasingly complex 

model formulations that are becoming 

more and more difficult to parameter-

ize, validate, and diagnose. Will these 

models ultimately lead to improved 

understanding and increased predictive 

skill? Significant progress has also been 

made in recent years toward addressing 

this question through the application 

of data assimilation techniques, which 

can be used not only to refine model 

parameter values, but also to provide 

insights into the impacts of model com-

plexity on predictive skill. For example, 

Friedrichs et al. (2007) have used the 

adjoint method to carry out some of the 

first quantitative intercomparisons of 

different biogeochemical model formu-

lations that incorporate widely varying 

levels of ecosystem and biogeochemical 

complexity. Among other things, this 

work has shown that complex model 

formulations can provide better predic-

tive skill than more simplified models 

and also better portability (Figure 5), 

where the latter refers to the ability of a 

model to adapt and function properly in 

different oceanic environments. But an 

important caveat is that more complex 
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models must be properly constrained 

with data (i.e., if they have too many 

degrees of freedom, then they can be 

tuned to fit noise in the data, which will 

result in reduced predictive skill). This 

is a significant caveat because it means 

that the amount of complexity that we 

can usefully incorporate into models will 

be dictated by the availability of the vali-

dation data that is needed to constrain 

them. The implication is that continu-

ing to add new organisms and metabolic 

processes to models that are discovered 

through microbiological and genomic 

studies may not be useful unless vali-

dation data relevant to these processes 

(e.g., time-series or spatial data) can 

also be obtained. 

The trend toward the development of 

increasingly complex models has raised 

concerns, especially among ecologists 

who have known for many years that 

there may be fundamental limits to the 

level of complexity that can be usefully 

incorporated into ecological and biogeo-

chemical models (May, 1974). Typically, 

marine-ecosystem models have progres-

sively increased the complexity and reso-

lution of functional groups, incremen-

tally adding new “species” or functional 

types with a priori imposed physiological 

characteristics. In contrast, an alternative 

approach has recently been explored by 

Follows et al. (2007): the model is initial-

ized with a very diverse phytoplankton 

community, explicitly representing many 

tens of potentially viable functional types 

whose physiological characteristics are 

provided stochastically, from plausible 

ranges. When embedded in a simulated, 

global, four-dimensional (x, y, z, and 

time) physical and chemical environ-

ment, several of the (relatively) fittest 

organism types grow to dominate each 

biogeographical “province” while many, 

less-fit types decline to very low abun-

dance or extinction. The system thus 

“self-selects” its own community struc-

ture in a manner that is conceptually 

related to natural selection. The resulting 

community structure and physiological 

characteristics of the dominant organ-

isms are emergent properties of the 

model. Follows et al. (2007) demonstrate 

that the organism types that come to the 

fore seem to reflect real-world counter-

parts in the ocean; that is, the model gen-

erates phytoplankton biomass distribu-

tions and community structure that bear 

some resemblance to observed, large-

scale distributions (Figure 6). When 

enabled (but not demanded), the model 

even supports multiple analogs of strains 

of the cyanobacterium Prochlorococcus 

that exhibit similar variety of habitat and 

correlated physiological characteristics to 

those observed in situ. 

The success of this study suggests 

that the stochastic, self-organizing 

approach to modeling marine ecosys-

tems has significant potential for wider 

application. It circumvents many of the 

obstacles and concerns that are cur-

rently encountered with typical “for-

ward” modeling approaches, such as the 

a priori imposition of increasingly large 

numbers of organisms and parameter-

ized physiological responses. One could 

envision this approach ultimately lead-

ing to models where the relative fitness 

of a virtual cell type is determined by 
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Figure 5. Results from quantitative model intercomparisons from Friedrichs et al. (2007). Cost function (J) 
is plotted as a function of model number. The taller bars represent higher cost and poorer fit to observa-
tions from the Arabian Sea (AS) and the Equatorial Pacific (EP). Red bars represent the EP component 
of J; blue bars represent the AS component of J. The vertical dashed line separates the single-phytoplank-
ton models (models 1–5) from the multi-phytoplankton models (models 6–12). Bars lower than the 
dotted horizontal line indicate that the model-data misfit is lower than that computed from the mean of 
the observations. Two solid horizontal lines represent mean cost for the single-phytoplankton and multi-
phytoplankton models, respectively; error bars indicate one standard error. Expt. 3 results are derived 
from simultaneous assimilation of AS and EP data. Expt. 4 results are from cross-validation experiments 
where the models were fit to data from AS(EP) and then cost J calculated at EP(AS). Figures and caption 
modified from Friedrichs et al. (2007)
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explicit models of cellular-scale meta-

bolic processes, modified by its genomic 

information and the environment in 

which it is embedded. Trade-offs could 

be determined by considering the ther-

modynamics and nutrient budgets of 

individual cells. Embedded in a simu-

lated physical, nutrient, and predatory 

environment, the system would move 

toward a solution where the relatively 

fittest cell types dominate. This approach 

might not only provide tools for orga-

nizing and interpreting genomic data, 

but also the basis for an entirely new 

class of genetically informed models that 

allow community structure to emerge 

and evolve in response to changing 

environmental conditions. 

Plankton Population 

Dynamics and Subgrid- 

Scale Processes

Marine microbes, including bacteria, 

archaea, and viruses, are among the 

most numerous organisms on Earth, 

with prokaryotic abundances typically 

greater than a million cells per millili-

ter of seawater, and viruses often occur 

with abundances that are ten times that 

amount (e.g., Fuhrman, 1999; Pomeroy 

et al., this issue; Breitbart et al., this 

issue). Yet the distances between adjacent 

organisms are quite large relative to the 

sizes of the organisms themselves as well 

as the scales of the turbulent fluid that 

surrounds them (e.g., Hulburt, 1970). 

It has long been suggested that phy-

toplankton create diffusive spheres of 

nutrient deficit about them (Pasciak and 

Gavis, 1974), and their discrete nature 

has been observed in situ (e.g., Franks 

and Jaffe, 2001). This notion of indi-

vidual interaction is built into modern 

models of zooplankton prey encoun-

ter and utilization (e.g., Wiggert et al., 

2005). In all, marine microbial interac-

tions are, to first order, among individu-

als, and this discrete nature will have 

influence on the population dynamics 

and community structure changes. 

The discrete nature of marine popu-

lations suggests that to understand and 

predict the dynamics of marine micro-

bial communities, the spatial organiza-

tion and interactions of individuals need 

Figure 6. Phytoplankton biomass and community structure from a single integration of 
the Follows et al. (2007) global model. (a) Modeled annual mean total phytoplankton 
biomass in terms of phosphorus (μM P, average 0–50 m). (b) Emergent biogeography: 
Modeled photo-autotrophs are categorized into four phytoplankton functional groups, 
each of which is a composite of several model phytoplankton types. Regions are color 
coded according to the functional group that dominates local biomass in the annual 
mean. Green: analogs of Prochlorococcus; orange: other small photo-autotrophs; red: 
analogs of diatoms; yellow: other large phytoplankton. (c) Modeled annual mean total 
biomass of Prochlorococcus analogs (μM P, average 0–50 m). From Follows et al. (2007). 
Reprinted with permission from AAAS
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to be assessed (e.g., Blackburn et al., 

1997). Even though the microbial abun-

dances are huge, in the fluid mechanical 

sense they are dilute. Therefore, micro-

bial populations will respond to environ-

mental perturbations as discrete indi-

viduals interacting (slowly) through a 

viscous fluid medium (e.g., Siegel, 1998). 

This, in turn, should allow the emer-

gence of microscale patterns in the spa-

tial organization of individuals within a 

community. Figure 7 is a cartoon version 

of this “spatialization” in an impression-

ist painting of microbial interactions 

within a drop of seawater by Farooq 

Azam (1998). Here, there is a localization 

of where processes are occurring and the 

development of “hot spots” of activity. 

Clearly, the aggregated activity of this 

entire drop of seawater depends on the 

combined actions of the various local-

ized hot spots of activity. 

This localization of activity suggests 

that determinations of volume-averaged 

organism abundance is not sufficient 

alone for describing the dynamics of 

microbial communities. These circum-

stances, where processes acting on an 

individual scale can regulate the dynam-

ics of the community on population 

scales, are often called subgrid-scale 

(SGS) problems. We believe that achiev-

ing this level of understanding will lead 

to increased predictability in microbial 

systems and ultimately to new ways to 

represent newly discovered microbes and 

metabolic processes in marine-ecosystem 

and biogeochemical models. 

The development of individual-based 

models (IBMs) that represent ecosystem 

dynamics at these scales is an obvious 

avenue for future modeling-oriented 

research. IBMs are models that explicitly 

represent individual organisms (i.e., their 

movement, interactions, and impacts). 

This type of model is particularly well 

suited for representing organisms in 

dilute environments that are influenced 

by physical and chemical cues in the 

context of larger-scale circulations, for 

example, zooplankton dynamics in the 

California Current (e.g., Batchelder et al., 

2002), salmon migration and population 

dynamics (e.g., Rand et al., 1997), and 

even jellyfish transport and swimming 

behavior (Hood et al., 1999; Matanoski 

and Hood, 2005). Microbial community 

interactions represent a similar kind 

of problem where the consequences of 

directed and random motility and the 

slow diffusion of chemical substrates in 

a viscous fluid medium are particularly 

important. Microbial community IBMs 

could be used, for example, to investigate 

the costs and benefits associated with the 

production of alleleopathic substances or 

the role of the SGS clustering of organ-

isms on the trajectory of a population. 

Similarly, these types of models could 

also be used to try to better understand 

the ecological and biogeochemical role 

of newly discovered bacterial phylotypes 

and metabolic processes. 

Figure 7: The microbial loop: a bacterium’s-eye view of a drop of seawater from the 
ocean’s euphotic layer. Bacteria (red) acting on marine snow or detrital particles (black) 
or organic matter efflux from phytoplankton (green) creating diverse microniches or 
“hotspots,” which can support high bacterial diversity and high productivity. Protozoa 
are also seen aggregating about these “hotspots” of activity. Figure and legend modified 
from Azam (1998). Reprinted with permission from AAAS
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Summary and Conclusions

As the twenty-first century dawns, the 

application of new microbiological and 

genomic techniques in marine studies is 

creating an avalanche of new informa-

tion. We argue that the traditional mod-

eling tools that we have used for decades 

to simulate marine-ecosystem dynamics 

and biogeochemical cycles will be insuf-

ficient to allow an informed synthesis 

of this information and an assessment 

of what is important and what is not. 

The problem is that traditional mod-

els are static structures that need to be 

told what is important, and they cannot 

“evolve” under changing environmental 

conditions. These models also tend to be 

somewhat ad hoc in terms of the pro-

cesses and organisms that are included, 

and they are still quite primitive in some 

respects—especially in terms of their 

representations of prokaryotic organ-

isms. Dealing with the increasing com-

plexity of these models represents a 

major challenge in and of itself. 

If the modeling community wants to 

be in the vanguard of scientific discov-

ery, it will have to develop and/or apply 

some new tools. In this paper, we suggest 

several alternative modeling approaches, 

including the identification of overarch-

ing ecological theories and “goal func-

tions” based upon thermodynamic ana-

logues and stability considerations that 

can help guide modeling efforts. These 

have already been applied in marine-

ecosystem modeling studies to constrain 

free parameters, identify processes that 

are missing, and create models that can 

reorganize themselves and “evolve” in 

response to spatial and temporal changes 

in environmental conditions. 

New techniques like data assimilation 

can now be used to help parameterize 

complex models and determine whether 

or not they can provide better predic-

tive skill. New adaptive physiological 

and metabolic submodels are also being 

developed that can give models more 

flexibility to adapt to changing environ-

mental conditions. Alternative model-

ing approaches have also been recently 

developed that allow emergent plankton 

communities to self-assemble, organized 

in an analogy of “natural selection” and 

responding to the simulated physical and 

chemical environment. We are optimis-

tic that these new approaches can give 

rise to much more flexible, genetically 

informed models that allow community 

structure to emerge and evolve in both 

time and space. 

It is also important to recognize that 

we may need to change the way we 

think about, study, and model microbial 

interactions. Measures of mean organ-

ism abundance may be meaningless in 

describing the dynamics of microbial 

communities at very small scales of 

interaction. If we want to understand 

these interactions, then investigations at 

these small scales will be required. We 

also need to figure out how this infor-

mation propagates up to and impacts 

larger-scale ecosystem dynamics and 

biogeochemical cycles. We already have 

at our disposal modeling tools, like 

IBMs, that are well suited for simulating 

microbial interactions in dilute, viscous 

environments. These types of models 

need to be applied more aggressively 

to try to better understand the ecologi-

cal and biogeochemical role of newly 

discovered bacterial phylotypes and 

metabolic processes. 	
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