THE OCEANOGRAPHY SOCIETY:
READY FOR NEW ACTIVITIES

By D. James Baker, President

I AM HONORED to be elected as the first President of The Oceanography Society, and I extend congratulations on behalf of the entire Society to the newly elected President-Elect, Arnold Gordon, and to the members of the first Council of the Society: Penny Chisholm, Curt Collins, Cindy Lee, Tom Rossby, Connie Sancetta and Stan Wilson. Thanks are due to this group who have committed to working with the Society in its formative years, and to those who agreed to be on the ballot but who did not win. We are all looking forward to working with the new Council. This was the Society’s first election: we had more than 50% of our members vote, which is an excellent turnout. The League of Women Voters counted the ballots, ensuring that there was no conflict of interest involved.

We owe the launching of the Society to the Interim Council who have been fully dedicated to their work: Dave Brooks, who has made Oceanography Magazine an internationally recognized medium of communication for the field; Stan Wilson, who, more than anyone, is responsible for the success of the Inaugural Meeting; Chris Mooers, who has worked hard over plans for the next meetings; Neil Andersen, who has acted as Treasurer and Chairman of the Nominating Committee; Mel Briscoe, who has been our Secretary and the person responsible for the various items with the Society logo that were sold at the meeting (some are still available); Dave Schink, who began the long process of planning for Society meetings in general; and Leonard Johnson, who has been a source of strength and help in all of the Interim Council activities. Kudos to all for a job well done.

As we move to a more formal structure for our Council and for our office staff, special thanks for their hard work over the past eighteen months goes to our volunteers: Carol Andersen, Emily Baker, Dick Vetter and those members of the Joint Oceanographic Institutions’ staff who have helped in many ways: Rebecca Grimes, Ron Tipper, Frank Eden, Jack Clotworthy, Penny Peters, Peter Dunkelberger, Allison Burns and Andrea Johnson. Thanks also to Nancy Schifman, who has provided office support during these initial months, and to Yale Schifman of the American Meteorological Society, who provided much useful advice and help on meeting organization.

Serving as Interim President has given me some inkling of what the job is all about, but I hope that the next two years will see us make real progress towards the establishment of our Society as an integrating factor for the field as a whole—to help us come together as professionals in a scientific discipline and also to promote and publicize the importance of ocean science. The many activities planned have been listed in earlier issues of the magazine; now it is time to get some of these accomplished.

For those of you who were at the Inaugural Meeting, I am sure that you share my view that there was a special feeling of excitement and camaraderie as the speakers shared their enthusiasm about their research. The interdisciplinary aspect of having all speakers talk to one audience worked well; Rana Fine and her program committee are to be congratulated for their choice of speakers. In my view, the meeting could not have gone better, especially when we consider the very short lead time and the need to make many decisions without being able to consult widely. Special thanks are due to the co-sponsoring societies, the National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and Scientific Committee on Oceanic Research (SCOR) for providing support for students and scientists from developing countries to attend the meeting, and to Annette Najjar and E.H. Pechan & Associates, Inc., for providing a variety of meeting support services.

With the magazine launched, a successful meeting accomplished, a newly elected Council and Officers, formally adopted By-Laws, and a winning logo, the Society is ready to serve the oceanographic community. In previous issues of the magazine, I have talked about possible activities of the Society. Now we are ready to embark on a number of these. It is our plan to distribute a questionnaire to the membership asking for your priorities for the scientific, professional, and educational activities for the Society. Please take the time to answer; we need your input.

In the meantime, we have already begun planning for our next meeting which will take place in March of next year in Washington, D.C. This meeting will be a forum focused on education of Congressional policy-makers, both members and staff who are so important in determining national priorities. The meeting will be a three-day affair and will be joint with the new Council...
MEASUREMENT OF PHOTOSYNTHETIC RESPONSE TO EUPHOTIC ZONE PHYSICAL FORCING

By Gary J. Kirkpatrick, Thomas B. Curtin, Daniel Kamykowski, and Michael Feezor

We have designed and tested an innovative biophysical in situ measurement system to investigate the role of vertical motion in the photosynthetic response of phytoplankton within the upper mixing layer of the ocean. The two elements of the system are highly automated ensembles of sensors and control mechanisms integrated to obtain coincident measurements of photosynthesis and velocity/density. The scales of physical motion addressed locally range from one centimeter to one meter and ten hertz to ten days. To cover larger spatial scales such systems can be nested in arrays. Velocity is sensed electromagnetically with electrodes distributed to resolve a wave number/frequency spectral window thought to be important in defining plankton trajectories. The self-contained, in situ photosynthesis device acquires multiple rate estimates from a contained culture. Photosynthetic response is obtained on time scales from approximately five minutes to twenty-four hours by controlling the range of pH and dissolved oxygen within the culture. A principal objective of the measurement is to determine the coherence between physical forcing and photosynthetic response. Recent prototype field data are presented to demonstrate performance and compare output from this system with standard techniques of photosynthesis measurement.