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S P E C I A L  I S S U E  F E AT U R E

Certain low-molecular-weight gases, 

such as methane, ethane, and carbon 

dioxide, can combine with water to 

form ice-like substances at high pres-

sure or low temperature. These com-

pounds, commonly called gas hydrates, 

concentrate gas in solid form and occur 

naturally in sediment beneath the Arc-

tic permafrost and in the sediments of 

the continental slope. A decomposing 

piece of gas hydrate can be ignited and 

will sustain a fl ame as the methane is 

released, producing the phenomenon of 

“burning ice.”

Ocean drilling has proven to be an 

important tool for the study of marine 

gas hydrate systems, which have been 

increasingly recognized as important to 

society. In some places, methane hydrate 

may be concentrated enough to be an 

economically viable fossil fuel resource. 

However, geohazards may be associated 

with gas hydrates as well, through large-

scale slope destabilization (e.g., Maslin 

et al., 2004) and release of methane, a 

potent greenhouse gas. Indeed, evidence 

collected from deep-sea sediments sug-

gests that major global warming episodes 

in the past were associated with massive 

methane releases from gas hydrate de-

posits (e.g., Dickens et al., 1995; Hesslebo 

et al., 2000), although this hypothesis 

remains controversial (e.g., Bowen et 

al., 2006). Climate changes over the late 

Quaternary have also been linked to re-
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lease of methane from submarine gas 

hydrates (Kennett et al., 2003). However, 

isotopic studies of methane in ice cores 

(e.g. Sowers, 2006) and budget calcula-

tions for the global carbon cycle suggest 

that the impact of gas hydrates must 

have been minor (Maslin and Thomas, 

2003). Methane hydrate deposits and the 

associated sediments have also become 

an important focus for biogeochemical 

studies of the deep biosphere to elucidate 

the function and community structure 

of microbes that produce and consume 

methane (e.g., Wellsbury et al., 2000). 

In this paper, we summarize the prin-

cipal lessons learned about marine gas 

hydrate deposits through scientifi c ocean 

drilling, focusing on results of recent 

expeditions conducted by the Ocean 

Drilling Program (ODP), the Integrated 

Ocean Drilling Program (IODP), and 

the U.S. Department of Energy (DOE)/

ChevronTexaco Joint Industry Program 

(JIP). Gas-hydrate-bearing marine sedi-

ments were fi rst cored during Leg 11 of 

the Deep Sea Drilling Project (DSDP) 

in 1970 at Blake Ridge (southeast U.S. 

continental margin), and the fi rst deep-

sea gas hydrate specimens were observed 

in sediments recovered from the accre-

tionary complex of the Middle America 

trench during DSDP Legs 66 and 67 in 

1979. Since that time, gas hydrates have 

been inferred or observed in numer-

ous scientifi c boreholes. Here we focus 

on examples from recent expeditions 

in three major gas hydrate provinces. 

Blake Ridge is a passive margin sediment 

drift deposit located on the southeastern 

United States margin, which was drilled 

during ODP Leg 164 (1995). The Casca-

dia maring offshore the Pacifi c North-

west coast is an accretionary complex 

drilled during ODP Legs 146 (1992) and 

204 (2002), and IODP Expedition 311 

(2005). The Gulf of Mexico represents a 

passive margin petroleum province that 

has been strongly affected by salt tecton-

ics and has been the subject of IODP 

site surveys and drilling by the DOE/

ChevronTexaco JIP. 

GAS HYDR ATES IN MARINE 

SEDIMENTS

The stability of gas hydrate depends 

most fundamentally on temperature, 

pressure, gas composition and satura-

tion, and pore-water composition (Fig-

ure 1A). Gas hydrate nucleation and 

growth also depend on sediment grain 

size, shape, and composition (Clennell 

et al., 1999). These parameters, which 

control gas hydrate formation and per-
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Figure 1. (A) Th e methane hydrate stability boundary compared to water ice stability for fresh water. Th e stability boundary moves to the right if 

gas contains CO
2
, H

2
S, or higher-order hydrocarbons and to the left as pore-water salinity increases or if the gas contains N

2
. For quantitative analy-

sis of the eff ects of these parameters on gas hydrate stability, see Sloan (1998). (B) Gas hydrate stability in the marine environment. Th e gas hydrate 

stability zone (GHSZ) extends from the depth within the ocean at which gas hydrate becomes stable (which depends on local water temperature) 

to a depth beneath the seafl oor that is determined by the local geothermal gradient. Much of the seafl oor is within the GHSZ. Th e thickness of the 

GHSZ below the seafl oor increases as water depth increases if the geothermal gradient is constant. 
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sistence, are affected by a wide range 

of processes in the ocean, leading to 

multiple possible dynamic feedbacks 

on various timescales (e.g., Kvenvolden, 

1988; Paull et al., 1991; Dickens et al., 

1995; Kennett et al., 2003; Buffett and 

Archer, 2004). 

Because methane is the dominant gas 

contained in submarine gas hydrates 

(Kvenvolden, 1993), we use the stabil-

ity curve calculated for pure methane 

Structure-I hydrate in this discussion. At 

atmospheric pressure, methane hydrate 

is stable only at temperatures below 

~ -80°C. Thus, when a sample contain-

ing gas hydrate is recovered through 

deep-ocean drilling, gas hydrate is lost as 

the core experiences decreased pressure 

and increased temperature during recov-

ery. Sampling gas hydrate, preserving it 

for further study, and using observations 

in recovered cores to infer its concen-

tration and distribution in situ present 

unique challenges to the ocean drill-

ing community. 

Temperature and pressure condi-

tions consistent with methane hydrate 

stability are found at the seafl oor nearly 

everywhere at water depths exceeding 

300–800 m, depending on regional sea-

water temperature (Figure 1B). Temper-

atures below the seafl oor increase with 

depth following the regional geothermal 

gradient, which can be overprinted by 

local thermal perturbations caused by 

fl uid fl ow and heat focusing (e.g., near 

salt diapirs). At a depth of a few to sev-

eral hundred meters below the seafl oor, 

the temperature profi le in the sediments 

crosses the pressure-temperature curve 

that defi nes methane stability conditions 

(Figure 1B). Based on these criteria, gas 

hydrate could potentially form almost 

everywhere beneath the continental 

slope and ocean basins. In most of the 

deep ocean basin, however, methane 

concentrations in pore water are below 

saturation (Claypool and Kaplan, 1974). 

Figure 2. World map with documented and inferred gas hydrate occurrences. Inferred gas hydrate occurrences are based primarily on 

the presence of a seismic refl ection known as the Bottom-Simulating Refl ection (BSR), velocity amplitude peculiarities on seismic re-

cords, well-log signatures indicative of the presence of gas hydrate, and freshening of pore waters in cores. Samples were recovered us-

ing research submersibles, remotely operated vehicles (ROVs), grab samplers, dredges, piston coring, and coring during DSDP, ODP, and 

IODP operations. Data from Kvenvolden and Lorenson (2001) and updated by Milkov (2005). Reprinted from Doyle et al. (2004). 
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This condition means that gas hydrate 

is, generally, restricted to continental 

margins and enclosed seas (Figure 2), 

where organic matter accumulates rap-

idly enough to support methane produc-

tion by bacteria or where existing free or 

dissolved gas is transported into the gas 

hydrate stability zone (GHSZ). 

Temperature and pressure are not 

static parameters. They are affected by 

tectonic activity, sedimentation, chang-

es in sea level, and changes in ocean 

temperature. As one example, Figure 3 

demonstrates how uplift or changes in 

sea level will affect the GHSZ (Pecher et 

al., 1998, 2001). Similarly, an increase in 

the temperature of deep-ocean water will 

thin the GHSZ, although such tempera-

ture changes require thousands of years 

to propagate into sediments (Xu, 2004; 

Mienert et al., 2005; Bangs et al., 2005). 

Short-term changes in bottom water 

temperature and pressure due to tides, 

currents, or deep eddies can also affect 

gas hydrate deposits (e.g., Ruppel, 2000; 

MacDonald et al., 1994, 2005).

Both biogenic and thermogenic 

sources produce hydrocarbons that 

are incorporated into gas hydrate de-

posits. Biogenic methane can originate 

wherever organic matter occurs in the 

presence of a suitable microbial consor-

tium (Davie and Buffett, 2001). Offset-

ting methane production are microbial 

processes that consume methane (e.g., 

Boetius et al., 2000; Orphan et al., 2001a, 

2001b; Luff et al., 2005). Within marine 

sediments, anaerobic oxidation of meth-

ane (AOM) by sulfate is largely respon-

sible for the methane-free zone found 

from the seafl oor to subseafl oor depths 

as great as hundreds of meters in some 

settings. The thickness of this meth-

ane-depleted zone, the base of which 

coincides with depletion in sulfate, is a 

valuable proxy for methane fl ux in diffu-

sion-dominated systems (e.g., Borowski 

et al., 1996). However, gas hydrate de-

posits have been observed at and near 

the seafl oor (e.g., Brooks et al., 1984; 

Suess et al., 2001; Chapman et al., 2004). 

Formation and maintenance of these 

deposits require rapid methane fl ux and 

many of these deposits show geochemi-

cal indicators of thermogenic gas that 

has migrated from subseafl oor depths 

greater than 2 km. 

A critical factor in formation of gas 

hydrates is the concentration of meth-

ane with respect to methane solubility 

in the sediment pore water, which is a 

function of temperature and pressure 

(Claypool and Kaplan, 1974). Methane 
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solubility varies with depth as shown in 

Figure 4. Methane hydrate will form only 

where the concentration of methane in 

the pore water exceeds solubility. In most 

environments, no gas hydrate is present 

near the top of the GHSZ because the 

concentration of methane is low, due to 

AOM and to diffusion of methane into 

the ocean, where the concentration of 

dissolved methane is very low (Claypool 

and Kaplan, 1974). Because solubility 

generally decreases as water depth de-

creases (Figure 4B), gas hydrate forma-

tion can result from tectonic uplift of 

sediment and depressurization of pore 

water as it migrates through the sedi-

ment to a more shallow depth. 

Pore fl uid composition is another dy-

namic parameter that affects gas hydrate 

(Handa, 1990). Briny fl uids originating 

with salt deposits inhibit gas hydrate 

stability in some settings (e.g., Gulf of 

Mexico, Ruppel et al., 2005). In other 

cases, the process of forming gas hydrate, 

whose clathrate structure excludes salts, 

may increase the salinity of pore wa-

ters (Milkov et al., 2004a; Torres et al., 

2004a, 2005; Milkov and Xu, 2005; Liu 

and Flemings, 2006). Another complica-

tion may arise in low-permeability sedi-

ments, where gas hydrate formation may 

stall as all available water is consumed 

(Tréhu et al., 2004a; Claypool et al., in 

press). These feedbacks—between pore-

water composition and availability, and 

gas hydrate formation and stability—are 

most important where methane fl ux is 

rapid and probably do not signifi cantly 

affect gas hydrate dynamics on a global 

scale. Locally, though, these factors may 

be important in permitting the migra-

tion of free gas through the GHSZ (Liu 

and Flemings, 2006).

Ocean drilling results have highlighted 

the importance of lithology (the composi-

tion, grain size, and shape of sediment 

particles) in controlling where and how 

gas hydrate precipitates (e.g., Ginsberg et 
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Figure 4. (A) Th e relationship among the gas hydrate stability zone (GHSZ), the zone in which gas hydrate actually occurs (GHOZ), the free 
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creases to a critical value, the gas hydrate and free gas zones will expand downward and upward, respectively. (B) Eff ect of water depth on meth-

ane solubility. As a parcel of sediment is uplifted from 3000 to 800 meters below seafl oor in an accretionary complex, methane solubility de-

creases by a factor of two (G. Claypool, U.S. Geological Survey, retired, personal communication, 2000). Similarly, solubility will decrease as pore 

water is expelled upwards as a result of sediment compaction. 
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al., 2000; Weinberger et al., 2005; Expedi-

tion 311 Scientists, 2005), as predicted 

based on models of capillary forces (e.g., 

Clennell et al., 1999; Henry et al., 1999) 

and laboratory studies of gas hydrate for-

mation in different sediments (Santama-

rina et al., 2004). In natural systems, gas 

hydrate preferentially forms in coarse-

grained sediments (Figure 5A). In fi ne-

grained sediments, gas hydrate tends to 

form discrete veins and lenses (Figure 5B) 

and often concentrates in zones with 

slightly enhanced permeability (e.g., dia-

tom-rich layers; Kraemer et al., 2000). 

In summary, it is clear that many pro-

cesses affect migration of free gas and 

aqueous fl uids through the GHSZ (Fig-

ure 6). The geologic setting controls rates 

of fl uid fl ow and the amount of methane 

available for gas hydrate formation. Rich, 

shallow gas hydrate deposits form near 

the seafl oor only where geologic struc-

ture focuses methane. Lithology, fracture 

distribution and pore-space geometry 

also impact fl uid fl ow and gas hydrate 

nucleation and growth, and thus control 

the fi ne-scale gas hydrate distribution. 

REMOTE SENSING

Geophysical surveys are a primary tool 

for detecting the presence of gas hydrate 

in marine sediments and represent an 

essential precursor for drilling expedi-

tions. The geophysical data are used to 

identify suitable drill sites and provide 

the supporting geological context for the 

sites. Drilling data, in turn, are used to 

calibrate and validate models for gas hy-

drate distribution derived from remote-

sensing data. 

The most widely used geophysical 

indicator for gas hydrate is a distinctive 

seismic refl ection known as the Bottom-

Simulating Reflection (BSR) because it 

roughly follows the shape of the seafl oor 

and cross-cuts refl ections from dipping 

sedimentary strata (Figure 7). This re-

fl ection occurs close to the predicted 

A.

B. C.

Figure 5. Examples of gas hydrate recovered by 

ODP and IODP drilling. (A) Gas hydrate recov-

ered during Expedition 311, cementing sand 

adjacent to hydrate-free clay from 44.85 mbsf. 

(B) A 1-cm-thick gas hydrate lens with thin gas 

hydrate veins recovered during Leg 204, Site 1248, 

from 7.37 mbsf. Th is sample contained an anoma-

lous amount of propane (Shipboard Scientifi c Par-

ty, 2003). (C) Massive gas hydrate from Leg 204, 

from 1.20 mbsf. 
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an accretionary complex. Sediments that are deposited on the abyssal plain are tectonically thickened by sediment subduction and accretion, leading to dewa-

tering in excess of the amount induced by normal sedimentation, increasing the volume of sediment available for generation of methane that an migrate into 

the GHSZ. Th is environment also results in many anticlines and faults that serve as gas traps and conduits, respectively. Slumping and rapid sedimentation in 

slope basins overlying the accretionary complex are also common in this tectonic setting. 
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base of the GHSZ and has characteristics 

consistent with layering of higher-ve-

locity over lower-velocity material. The 

BSR is thus interpreted to result from the 

velocity contrast between gas-hydrate-

bearing strata and strata containing free 

gas (Tucholke et al., 1977; Shipley et al., 

1979). Gas hydrate has, however, been 

documented where no BSR is observed 

(e.g., Mathews and von Huene, 1985; 

Paull et al., 1996), so although the pres-

ence of a BSR is a strong indicator that 

at least a small amount of gas hydrate is 

present, the lack of a BSR does not imply 

that gas hydrate is absent. 

Although many attempts have been 

made to determine the amount of gas 

hydrate and underlying free gas by mod-

eling BSR waveforms (e.g., Singh et al., 

1993; Korenaga et al., 1997; Yuan et al., 

1999; Tinivella and Accaino, 2000), these 

efforts contain large uncertainties. Even a 

small amount of free gas has a large ef-

fect on seismic velocity (e.g., Ostrander, 

1984), whereas the effect of gas hydrate 

on seismic velocity depends strongly on 

the microscale distribution of gas hy-

drate and its relationship to the sediment 

grains (e.g., Dvorkin and Nur, 1993; Hel-

gerud, 1999). Calibration of estimates of 

gas hydrate and free gas amounts derived 

from seismic data is restricted to a few 

places where downhole logging data and 

coincident samples constrain the het-

erogeneity of gas distribution in marine 

sediments. Laboratory studies of gas 

hydrate formation in marine sediments 

also provide important information for 

calibrating remote-sensing efforts (e.g., 

Yun et al., 2005). 

Other techniques that have the po-

tential to identify and quantify the gas 

hydrate and free-gas content of sedi-

ments over large regions include con-

trolled-source electromagnetic sounding 

(e.g., Edwards, 1997; Yuan and Edwards, 

2000; Weitemeyer et al., 2005), seafl oor 

compliance (Willoughby and Edwards, 

1997; Willoughby et al., 2005), and 

ocean-bottom seismology, which permits 

analysis of seismic shear waves as well as 

pressure waves (e.g., Hobro et al., 2005; 

Spence et al., 1995; Westbrook et al., 

2005; Backus et al., 2006).

Near-seafloor deposits of gas hydrate 

present particular challenges for widely 

spaced, regional geophysical survey tech-

niques. These deposits require specifi c 

geologic structures to generate the re-

quired rapid methane fl ux and are often 

of limited spatial extent. An important 

exploratory mapping tool for these de-

posits, which appear as highly refl ective 

patches when they breach the seafl oor, is 

surface or deep-towed side-scan reflec-

tivity (e.g., Carson et al., 1994; Johnson 

et al., 2003; Roberts et al., 2006). This 

technique rapidly images large patches of 

seafl oor. Interpreting such data requires 

distinguishing “brightness anomalies” 

representing gas hydrate deposits from 

those associated with seafl oor topogra-

phy, changes in sediment type, and sea-

fl oor mineral deposits, features that may 

or may not be related to the presence of 

gas hydrates (Roberts and Carney, 1997). 

LOGGING AND CORING

Direct information about the abundance 

and distribution of gas hydrate in marine 

sediments can only be obtained by drill-

ing. Coring allows for recovery and anal-

ysis of subsurface samples, while logging 

techniques permit measurement of in 

situ geophysical and geochemical param-

eters along the length of the borehole. 

Gas hydrate is subject to rapid dis-

sociation when recovered from the 

seafl oor in conventional (non-pressur-

ized) cores. Estimates of gas hydrate 

abundance and distribution in the sub-

surface must therefore often rely on 

proxies of varying accuracy and resolu-

tion. Proxies for gas hydrate include: 

total gas volumes from pressure-core 

samples; geochemical measurements 

such as pore-water–dissolved chloride 

(Cl-) concentration; core temperatures 

measured with scanning infrared (IR) 

cameras; geophysical logs; and vertical 

seismic profi les. The fi rst two techniques 

provide accurate but incomplete esti-

mates of the gas hydrate content of the 

subsurface because they represent only 

a small fraction of the sediment within 

the GHSZ. The latter three approaches 

provide good spatial coverage, but algo-

rithms for quantifying gas hydrate from 

the observations must be calibrated and 

verifi ed by other techniques. Geophysi-

cal logs provide the only means of ob-

taining high-resolution data at in situ 

conditions from the entire borehole, 

including those intervals for which sedi-

ment is not recovered. Moreover, many 

geophysical parameters (e.g., seismic 

velocity, electrical resistivity, density) 

depend on the sediment fabric, which 

changes as pressure is released.

Pressure Cores 

Pressure cores provide the only means 

of recovering all of the gas present at in 

situ conditions, including gas dissolved 

in the pore water, free gas bubbles, and 

gas trapped in gas hydrate. Assuming 

that various gas phases (gas hydrate, free 

gas, and dissolved gas) are at equilibrium 

conditions prior to core recovery, the 
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Figure 7. (A) Single channel seismic profi le across the crest of the Blake Ridge showing locations of Sites 994, 995, and 997, drilled during ODP Leg 164. Seismic 

velocity profi les at the three sites from vertical seismic profi les are shown on the right (from Holbrook et al., 1996). Note the absence of a BSR at Site 994. Here, 

the methane fl ux is such that the base of gas hydrate and the top of free gas are separated by a depth range in which the methane concentration is too low to 

allow gas hydrate formation near the base of the GHSZ as defi ned by in situ temperature and pressure. ReG – refl ectivity enhanced by the presence of free gas; 

mbsl – meters below sea level; mbsf – meters below seafl oor; Vp – velocity of seismic P-waves. (B) Vertical slice extracted from a three-dimensional (3D) seis-

mic survey of southern Hydrate Ridge in the Cascadia accretionary complex. Sites 1249 and 1250, near the summit of the structure, are shown on this slice. Th e 

velocity of seismic P and S waves determined by sonic logs (red and grey lines) and a vertical seismic profi le (blue line) at Site 1250 is shown on the right. A BSR 

is apparent on both seismic profi les at a depth of ~ 475 mbsf beneath Blake Ridge and ~ 120 mbsf beneath southern Hydrate Ridge. Th e light pink shading on 

both profi les delimits DLF deposits in which gas hydrate occupies 2–8 percent of the pore space, on average (Dickens et al., 1997; Holbrook et al., 1996; Tréhu 

et al., 2004b), with locally greater gas hydrate content controlled by lithology (e.g., Ginsberg et al., 2000; Kraemer et al., 2000; Tréhu et al., 2004b; Weinberger et 

al., 2005). At southern Hydrate Ridge, a FHF deposit is superimposed on the regional DLF deposit (dark pink shading). Th e gas hydrate content of this deposit 

appears to be ~ 25 percent of the total sediment volume (Tréhu et al., 2004b). Modeling suggests that an abundant supply of free gas is needed to form this 

deposit (Torres et al., 2004a). A decrease in P-wave velocity to ~ 1400 m/s below the BSR at all the sites shown in this fi gure indicates the presence of free gas 

(Holbrook et al., 1996; Tréhu et al., 2006). Extremely low P- and S-wave velocities associated with Horizon A support the conclusion that it contains enough free 

gas to result in high gas pressures, which can drive free gas into and through the GHSZ (Tréhu et al., 2004a).
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amount of gas hydrate present within the 

core can be determined by measuring 

the total amount of gas released from the 

core as pressure is released and compar-

ing the in situ gas concentration to the in 

situ gas saturation assuming that in situ 

porosity is known (Dickens et al., 1997). 

The fi rst in situ gas-concentration mea-

surements were collected at Blake Ridge 

during ODP Leg 164 (Dickens et al., 

1997) using the Pressure Core Sampler 

(PCS) developed by ODP. Similar data 

have now been generated from boreholes 

in other regions using the same fi rst-

generation tool (e.g., Milkov et al., 2003). 

As the only direct measurement of the 

amount of gas in a core, these measure-

ments provide critical information to 

test estimates of gas hydrate content ob-

tained by other means, but provide little 

information on length scales shorter 

than a core length (generally 1 m). Be-

cause information on the fi ne-scale dis-

tribution is critical for development of 

models to interpret downhole geophysi-

cal logs and remote sensing data (e.g. 

Dvorkin and Nur, 1993; Helgerud et al., 

1999), considerable effort has been ex-

pended in recent years to develop new 

pressure coring systems that permit de-

tailed analysis of physical properties at in 

situ conditions (Box 1; Figure 8A). 

Existing pressure coring tools con-

sume considerable time and labor to 

deploy and de-gas. Consequently, only a 

small percentage of the sediment column 

can be sampled using these tools. 

Geochemical Proxies

Several geochemical proxies have been 

developed to estimate the in situ gas 

hydrate content of sediment cores. The 

most widely used is based on measure-

BOX 1:  RECENT ADVANCES IN PRESSURE CORING

Pressure cores are critical for understanding the fi ne-scale structure of gas-hydrate-

bearing sediments and the physical and chemical conditions within these sediments. 

In the past few years, new pressure coring systems have been developed and fi eld 

tested to provide this information and to constrain the total amount of gas present in 

situ. Th ese new systems include the HYACINTH pressure corers (HYACE rotary corer 

and Fugro pressure core) that have been used on several ODP and IODP expeditions 

(Shipboard Scientifi c Party, 2003; Expedition 311 Scientists, 2005; Schultheiss et al., 

2006) and during JIP Gulf of Mexico drilling, and the PTCS (Pressure-Temperature Cor-

ing System), a three-meter-long pressure corer developed by the Japanese National Oil 

Corporation (JNOC) for use drilling gas hydrates in the Nankai accretionary complex 

off shore Japan (Takahashi and Tsuji, 2005). Th e HYACINTH pressure coring systems 

have the unique ability to transfer the core under pressure to shipboard or shore-

based analysis equipment for further study at in situ hydrostatic pressure. 

A pressurized Multi-Sensor Core Logger has been developed specifi cally to make 

noninvasive, continuous measurements of physical properties (Shipboard Scientifi c 

Party, 2003) on cores recovered and maintained at in situ hydrostatic pressure. Cur-

rent instrument capabilities include acoustic velocity (V
p
), gamma density, and X-ray 

imaging (Expedition 311 Scientists, 2005). Th e addition of X-ray and gamma-density 

analysis to traditional pressure coring system (PCS) cores has improved quantitative 

estimates of gas hydrate in these cores by better constraining sediment volume and 

sediment density, and by providing a temporal history of gas void creation during and 

after depressurization (Figure 8A). Combined with the X-rays, these analyses provide 

unique information on fi ne-scale gas hydrate structures (Abegg et al., in press; Expedi-

tion 311 Scientists, 2005). 

Discrete point measurements, collected by placing sensors in direct contact with 

the sediment through holes drilled into the core liner without ever releasing the pres-

sure on the cores were fi rst conducted on the JIP Gulf of Mexico drilling expedition 

in 2005 (Yun et al., 2006). Th e fi rst generation of measurements included seismic ve-

locities (V
p
 and V

s
), electrical properties, and shear strength. Mechanical properties 

in particular cannot be accurately measured on conventional cores at atmospheric 

pressure due to the substantial disruption of sediment fabric by the coring and de-

pressurization process. Th is problem is exacerbated in hydrate-bearing sediments by 

the release of gas and water during dissociation of the hydrate. Pressure cores main-

tain the hydrostatic, but not eff ective, stress on the sediments, and future physical 

properties measurements on pressure cores will be most valuable if eff ective stress can 

be restored (Yun et al., 2006). In the meantime, even the data on cores held at in situ 

hydrostatic pressures are critically important for calibrating estimates of gas hydrate 

concentrations obtained from analysis of remote sensing data. 

While gas hydrate investigations are the primary driver for the development of 

these pressure coring and analysis techniques, other scientists can benefi t from tech-

niques that preserve hydrostatic pressure and the geochemistry of the solid and fl uid 

sediment phases. Microbial growth experiments are being conducted using deep sedi-

ments that have never been depressurized, but instead have been retrieved, subsam-

pled, and transferred into enrichment vessels under in situ pressure (R.J. Parkes, Cardiff  

University, personal communication, 2006). As pressure coring tools mature, more 

disciplines will be able to take advantage of samples returned at in situ conditions. 
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ment of dissolved Cl- in pore fl uids 

squeezed from sediment (e.g., Hesse 

and Harrison, 1981; Paull et al., 1996; 

Shipboard Scientifi c Party, 2003; Expedi-

tion 311 Scientists, 2005). Like ice, gas 

hydrate incorporates water but excludes 

dissolved ions during formation. With 

time, excess dissolved ions will advect or 

diffuse away from the location of gas hy-

drate precipitation. When cores are re-

covered from depth, however, gas hydrate 

will dissociate, adding fresh water to pore 

space and diluting dissolved ions, includ-

ing Cl-. One limitation of this technique 

is the time required to extract pore water 

from the sediment and accurately mea-

sure pore water Cl- concentration, which 

has limited routine sampling to ~ 5-m 

intervals along the core (Figure 8B, C), 

with fi ner sampling in regions of spe-

cial interest (e.g., Tréhu et al., 2004b; 

Expedition 311 Scientists, 2005). An-

other limitation is uncertainty about the 

background chloride content of the pore 

water, which can be affected by many dif-

ferent processes (e.g., Egeberg and Dick-

ens, 1999; Davie and Buffett, 2001; Torres 

Figure 8. (A) Gamma density profi les of a HYACINTH pressure core for ODP Leg 204 as pressure was released (Shipboard Scientifi c Party, 2003). Layers of very 

low density develop with time as gas hydrate lenses decompose in response to decreasing pressure. (B) Infrared image of several m of core on either side of the 

HYACINTH pressure core. Dark horizontal lines represent cold anomalies (6–8°C) resulting from gas hydrate decomposition; yellow lines represent warm anom-

alies (12–14°C) resulting from voids due to gas expansion. Th e approximate thickness and spacing of pore-water samples illustrates the relationship between the 

scale length of heterogeneities in the apparent gas hydrate distribution relative to pressure core and pore-water samples. (C) Cl- concentration measured in ODP 

Hole 1244C. If the envelope of the data is assumed to represent the background Cl- concentration (smooth black line), the low Cl- anomalies imply that the pore 

space contained up to 9 percent gas hydrate in the anomalous samples. Methane concentration from pressure-core data (red squares) is overlain on the Cl- data 

along with the hydrate phase diagram (red lines). Two pressure cores at this site likely contained gas hydrate. Th e amount of gas hydrate at this site, averaged 

over the thickness of the gas hydrate occurrence zone, is 2–8 percent (Tréhu et al., 2004b). (D) Resistivity-at-bit (RAB) data from LWD operations in ODP Hole 

1244D. A detail from 66–73 mbsf is shown, as well as an image of the entire hole. Bright regions (high resistivity) are indicative of gas hydrate when they also 

correspond to low-density zones. Th e detail shows considerable azimuthal variation in gas hydrate distribution, suggesting that the gas hydrate forms in steeply 

dipping faults and fractures in this interval (Janik et al., 2003; Weinberger and Brown, 2006). 
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et al., 2004b). For example, alteration of 

volcanogenic sediments may increase 

background chloride (Martin et al., 1995; 

Riedel et al., 2005), whereas clay dehydra-

tion, opal formation, and dissociation of 

gas hydrate left beneath the base of the 

GHSZ during upward migration of the 

stability zone can freshen pore waters 

(e.g., Egeberg and Dickens, 1999; Davie 

and Buffett, 2001; Ussler and Paull, 2001; 

Torres et al., 2004b). 

The methane-ethane ratio of gas ex-

solved from pore water is another proxy 

that shows some promise for quantify-

ing the amount of gas hydrate present in 

situ and for understanding gas hydrate 

dynamics (Milkov et al., 2004b). Ethane 

fractionation effects that distinguish 

ethane-enriched Structure-I gas hydrate 

solids from ethane-depleted dissolved 

gas may also be useful to reconstruct 

upward migration of the base of the gas 

hydrate stability fi eld in the past (Clay-

pool et al., in press). 

Infrared Cameras

Infrared cameras were fi rst introduced 

during ODP Leg 201 (Ford et al., 2003) 

and have been used since ODP Leg 204 

to image all core recovered from within 

or near the GHSZ. Gas hydrate dissocia-

tion is strongly endothermic, produc-

ing temperature anomalies in cores that 

can be several degrees colder than adja-

cent sediments. These cold spots were 

detected using individual temperature 

probes on ODP Leg 164 (e.g., Paull et 

al., 1996), but track-mounted infrared 

cameras now permit rapid, systematic 

scanning of all cores to identify gas-hy-

drate-bearing intervals and estimate gas 

hydrate distribution and concentration 

(Tréhu et al., 2004b; Long et al., 2004; 

Weinberger et al., 2005; Expedition 311 

Scientists, 2005). The resulting thermal 

images (e.g., Figure 8B) guide shipboard 

sampling of sediment intervals for de-

tailed studies of pore waters and litholo-

gies associated with gas-hydrate-bearing 

intervals or for storage in liquid nitrogen 

or in pressure vessels (for later analysis 

of gas hydrate structures). 

Downhole Geophysical Logs

Downhole geophysical logs have been 

used to record data on the ephemeral 

properties of methane hydrates since 

DSDP Leg 84 (Mathews, 1986) and have 

been acquired at all sites where gas hy-

drates have been detected during ODP 

and IODP. The use of logging-while-

drilling (LWD) technology, which ob-

tains logs immediately after drilling and 

before the sediments are affected by 

thermal perturbations associated with 

coring, is especially important for meth-

ane hydrate and gas-bearing sediments 

(Goldberg, 1997) where core recovery 

may be poor. LWD has recently been 

used as a reconnaissance tool to identify 

thin hydrate-bearing layers to be targeted 

by subsequent coring and sampling (e.g., 

Shipboard Scientifi c Party, 2003, Expe-

dition 311 Scientists, 2005). The most 

robust logging indicators of in situ meth-

ane hydrate are elevated electrical resis-

tivity (Figure 8D) and acoustic velocities 

(Figure 7) that coincide with low gamma 

ray density values (e.g., Mathews, 1986; 

Collett, 1993; Guerin et al., 1999; Guerin 

and Goldberg, 2002; Goldberg et al., 

2004). As for other remote-sensing tech-

niques, quantitative estimates of gas 

hydrate concentrations from log data 

require assumptions about the micro-

structural arrangement of gas hydrate 

and sediment grains (e.g., Helgerud et 

al., 1999; Yun et al., 2005) or the use of 

empirical Archie parameters (e.g., Col-

lett and Ladd, 2000). Spatial resolution 

of these techniques is such that they pro-

vide unique information on the hetero-

geneous distribution of hydrate through 

comparison of data obtained in closely 

spaced, laterally offset holes (Collett et 

al., 2004) and through acquisition of 

360-degree images of variation in physi-

cal parameters around the circumfer-

ence of single borehole (e.g., Collett and 

Ladd, 2000; Janik et al., 2003). 

Vertical Seismic Profiles

Vertical seismic profi les (VSPs) link data 

obtained by drilling to regional seismic 

refl ection data, thus calibrating algo-

rithms to quantify gas hydrate volume 

using remote-sensing techniques. VSP 

data have been important for constrain-

ing the amount of free gas present be-

neath the GHSZ (e.g., MacKay et al., 

1994; Holbrook et al., 1996; Tréhu et al., 

in press) and for defi ning patterns of 

velocity anisotropy that can be related 

to mechanisms for gas migration (e.g., 

Haacke, 2005). Seismic impedance in-

version based on core and logging data 

has also been used to determine regional 

gas hydrate concentrations away from 

boreholes (e.g., Dai et al., 2004; Belle-

fl eur et al., 2006). Although impedance 

inversion must be carefully calibrated, 

it is a powerful tool for regional gas hy-

drate concentration estimates and re-

source assessments.

In Situ Temperature Measurements

In situ temperature measurements ac-

quired with special downhole tools that 

measure equilibrium formation tem-
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perature provide an important direct 

constraint on the state of the gas hydrate 

reservoir (Ruppel, 2000). The fi rst com-

plete set of relatively closely spaced in 

situ temperature measurements within 

a GHSZ was acquired to depths of 

~ 385 mbsf (meters below seafl oor) on 

Blake Ridge (Ruppel, 1997). The results 

revealed a thermal gradient up to 30 per-

cent lower than that predicted based on 

conventional heat-fl ow data and a BSR 

temperature lower than the theoreti-

cal base of gas hydrate stability by 0.5 

to 2.9°C. In the Cascadia accretionary 

complex, the observed BSR depth is con-

sistent with the base of GHSZ predicted 

for methane in seawater at hydrostatic 

pressure within the uncertainty of in 

situ temperature and BSR depth esti-

mates (Tréhu, in press; Expedition 311 

Scientists, 2005). 

DISTRIBUTION AND DYNAMICS

Gas hydrate deposits can be classifi ed 

into end-member regimes based on the 

mechanisms that control gas transport 

into the GHSZ, although both regimes 

operate simultaneously in many regions. 

In focused, high-flux (FHF) gas hydrate 

systems, methane from a large volume 

of sediment is concentrated through 

focused fl uid fl ow in well-defi ned con-

duits. In distributed, low-flux (DLF) 

systems, most of the methane available 

for gas hydrate formation is generated 

near where the gas hydrate is formed, 

and fl uid fl ow is pervasive. FHF systems 

are associated with rich, localized hy-

drate deposits near the seafl oor, whereas 

DLF systems result in the broadly dis-

tributed gas hydrates that are widespread 

in marine sediments on continental 

margins. In this section, we discuss the 

characteristics of FHF and DLF gas hy-

drate systems based on lessons learned 

from recent drilling expeditions to three 

contrasting continental margin environ-

ments: (1) Blake Ridge, which is domi-

nantly a DLF system with secondary 

salt and focused venting; (2) the Gulf of 

Mexico, which is dominated by FHF de-

posits infl uenced by the presence of deep 

hydrocarbon and evaporite deposits; and 

(3) Cascadia, where both regimes coexist 

but evaporite deposits are absent, high-

lighting dynamic effects of ion accumu-

lation in the pore water during rapid gas 

hydrate formation. 

Focused, High-Flux Gas Hydrate 

Deposits 

Mounds of gas hydrates have been di-

rectly observed at the seafl oor during 

submersible dives and by using deep-

towed cameras and remotely operated 

vehicles (ROV) at many sites around 

the world, including the Gulf of Mexico 

(e.g., MacDonald et al., 1994; Roberts 

and Carney, 1997), Cascadia (e.g., Suess 

et al., 2001; Spence et al., 2001; Torres et 

al., 2002; Tryon et al., 2002; Chapman et 

al., 2004), the Blake Ridge Diapir (Van 

Dover et al., 2003), Central America 

(e.g., Grevemeyer et al., 2004), the Black 

Sea (e.g., Klaucke et al., 2006), and the 

Arctic Ocean (Vogt et al., 1997). Vigor-

ous expulsion of gas bubbles into the 

ocean is often observed above the sea-

fl oor hydrate mounds, even when the 

mound lies within the thermodynamic 

gas hydrate stability fi eld (e.g., MacDon-

ald et al., 1994, 2005; Heeschen et al., 

2003). The gas discharge, which is often 

episodic, provides evidence for the dy-

namic processes that lead to the forma-

tion of massive hydrate near the seafl oor. 

Although many of these gas hydrate oc-

currences were originally identifi ed by 

seafl oor imaging, some have been found 

by serendipity. For example, massive gas 

hydrate mounds offshore Vancouver Is-

land, Canada, were fi rst discovered when 

fi shermen trawling for ground fi sh ac-

cidentally dredged up some in their nets 

(Spence et al., 2001). 

Although these seafl oor gas hydrate 

deposits may constitute only a small 

percentage of the total amount of gas 

hydrate present in marine sediments, 

they represent the most accessible and 

best-studied deposits and are usually 

accompanied by complex fauna (e.g., 

Kulm et al., 1986; MacDonald et al., 

1989; Fisher et al., 2000; Van Dover et al., 

2003) that depend on a food chain based 

on symbiotic microorganisms similar 

to those found at hydrothermal vents. 

In most cases that have been studied in 

detail, the gas within these near-seafl oor 

deposits contains a mixture of biogenic 

and thermogenic gas, indicating that the 

gas has been transported from depths 

of several kilometers below seafl oor 

through geological structures that focus 

gas from a large volume of deeply buried 

sediments. The presence of longer-chain 

hydrocarbons, such as propane, can also 

result in the formation of rare forms of 

Structure-II or even Structure-H gas hy-

drate (e.g., Sassen et al., 2001; Pohlman 

et al., 2005) as well as the more common 

Structure-I hydrate (Sloan, 1998).

 FHF deposits that extend to tens 

of meters below the seafl oor have 

been drilled at the Blake Ridge Diapir 

(Site 996 of ODP Leg 164), in Cascadia 

during ODP Legs 146 (Site 892 at North 

Hydrate Ridge) and 204 (Sites 1248–

1250 at South Hydrate Ridge), and IODP 



Oceanography  Vol. 19, No. 4,  Dec. 2006 137

Expedition 311 (Site 1328 at the “Bulls-

eye” vent; Expedition 311 Scientists, 

2005), and in the Gulf of Mexico (Atwa-

ter Valley vents, GoM-JIP; Kastner et al., 

2005). At South Hydrate Ridge, gas that 

supplies seafl oor vents is focused towards 

the crest of an anticline by an anoma-

lously coarse-grained, volcanic-ash-rich 

stratigraphic horizon in which free gas 

saturation reaches 90 percent, leading to 

high gas pressures immediately beneath 

the GHSZ (Tréhu et al., 2004a). Here, 

methane appears to migrate in the free 

gas phase, and the aqueous fl uid fl ux is 

low as constrained by in situ tempera-

ture data (Torres et al., 2004a; Tréhu, in 

press). In northern Cascadia (IODP Ex-

pedition 311), localized vertical fl ow of 

warm aqueous pore fl uid has been sug-

gested (Wood et al., 2002). However, the 

upwarping of the BSR predicted by this 

model is not observed in seismic data 

and in situ temperature measurements 

do not reveal perturbation of the GHSZ 

beneath the shallow hydrate deposit 

(Riedel et al., 2002; Expedition 311 Sci-

entists, 2005), suggesting that the near-

seafl oor hydrate may be a relict of an 

earlier episode of fl uid fl ow. In the Gulf 

of Mexico and at the Blake Ridge Dia-

pir, lateral changes in thermal regimes 

or pore-water salinity, particularly near 

dissolving, high-thermal-conductivity, 

buried salt structures, can lead to com-

plex fl ow patterns (e.g., Ruppel et al., 

2005) and focusing of fl uids in chimneys 

beneath near-seafl oor hydrate deposits 

(e.g., Hornbach et al., 2005). Numerical 

modeling studies (Wilson and Ruppel, 

2005) show that faults in such systems 

are the locus of very rapid fl ux relative to 

the surrounding sediment, precisely the 

condition required to produce localized, 

transport-dominated hydrate deposits. 

Overpressures due to topography and 

rapid sedimentation (Dugan and Flem-

ings, 2000) certainly also contribute to 

fl ow at many sites. 

Distributed Low-Flux Gas Hydrate 

Deposits and Effects of Lithology

Gas hydrate deposits generated by dis-

tributed low-fl ux methane transport and 

in situ microbial methane production are 

generally characterized by relatively low 

concentrations (a few percent of pore 

space) of gas hydrate averaged over the 

GHSZ (e.g., Lorenson et al., 2000; Tréhu 

et al., 2004b). Even in regions dominated 

by DLF, however, fl uid advection is still 

critical for the delivery of methane-bear-

ing fl uids to the GHSZ. As demonstrated 

by Xu and Ruppel (1999), the diffusion 

of such fl uids is simply too slow to per-

mit the formation of substantial thick-

nesses of gas hydrate over reasonable 

geologic timescales unless rates of in situ 

microbial methane production are high-

er than is generally thought to be likely 

(Davie and Buffett, 2001). 

Blake Ridge, with its relatively low-

permeability, homogeneous sediments 

and tectonically quiescent setting, rep-

resents an end-member DLF system for 

homogeneous, fi ne-grained sediments. 

The pervasive BSR observed in the Cas-

cadia accretionary complex also results 

from distributed low-fl ux fl uid fl ow. In 

recent years, it has become clear that 

some of the undisturbed sedimentary 

sections in salt-withdrawal basins of the 

northern Gulf of Mexico probably also 

host low concentrations of gas hydrate 

with methane of entirely biogenic origin 

(Hutchinson et al., 2004). Thus, despite 

its overall thermogenic character and the 

occurrence of transport-dominated gas 

hydrate deposits at seafl oor mounds, the 

Gulf of Mexico also has elements that lie 

fi rmly within the DLF end member of 

gas hydrate deposits. 

 Models of DLF gas hydrate prov-

inces predict that gas hydrate concen-

trations are maximal near the base of 

the GHSZ (Hyndman and Davis, 1992; 

Rempel and Buffett, 1998; Xu and Rup-

pel, 1999). This result may in part refl ect 

the assumption of upward fl uid advec-

tion in these models and the form of the 

methane solubility curve (Nimblett and 

Ruppel, 2003), which has an infl ection 

at the hydrate-free gas phase boundary 

(Figure 4). Although logging and VSP 

results for Blake Ridge suggest higher 

concentrations of gas hydrate near the 

BSR, the inferred concentration of gas 

hydrate within the stability zone is far 

from uniform. Even within the relatively 

homogeneous sediments of Blake Ridge, 

small variations in permeability induced 

by variations in grain size (Ginsberg 

et al., 2000) and local concentration of 

diatom tests (Kraemer et al., 2000), lead 

to greater gas hydrate concentrations in 

some thin horizons at relatively shallow 

depths within the GHSZ. In addition to 

such lithologically induced permeabil-

ity variations, the permeability regime 

is modulated by very fi ne scale, steeply 

dipping faults (e.g., Rowe and Gettrust, 

1993), which appear to concentrate gas 

hydrate within this DLF hydrate prov-

ince (Wood and Ruppel, 2000). 

In Cascadia, where the sediments 

hosting gas hydrates include highly 

deformed accretionary complex sedi-

ments and turbidite-fi lled slope basins, 

lithologic variation is greater than on 

Blake Ridge and gas hydrate distribu-
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tion is strongly infl uenced by perme-

ability variations induced by lithologic 

variations (Weinberger et al., 2005) and 

fractures controlled by the local effective 

stress (Weinberger and Brown, 2006). 

Infrared thermal imagery and high-reso-

lution chloride measurements document 

many examples in which gas hydrate is 

confi ned to sandy layers but absent from 

the adjacent clay- and silt-rich sediments 

(Expedition 311 Scientists, 2005). Where 

silty and sandy layers are absent, gas hy-

drate forms discrete veins and lenses of 

nearly pure gas hydrate that are millime-

ters to centimeters thick, rather than oc-

cupying sediment pore space (Shipboard 

Scientifi c Party, 2003; Abegg et al., in 

press; Expedition 311 Scientists, 2005). 

SUMMARY

The last decade has seen tremendous 

advances in understanding marine gas 

hydrate reservoirs, due principally to 

the success of ocean drilling expedi-

tions designed particularly to advance 

gas hydrate objectives. Key lessons have 

emerged from scientifi c drilling of ma-

rine gas hydrate systems:

• Gas hydrate is distributed heteroge-

neously at all spatial scales, with per-

meability variations resulting from 

faults or variations in lithology exer-

cising primary control over the locus 

of gas hydrate concentration, even in 

seemingly homogeneous sediments.

• Lithology plays an important role in 

controlling where gas hydrate forms 

and whether it fi lls pore space be-

tween sediment grains or displaces 

grains to form lenses and nodules. 

In heterogeneous sediments, gas hy-

drate forms preferentially in coarse-

grained horizons. 

• Gas hydrate occurs even in locations 

where no BSR can be recognized. 

Remote-sensing techniques under 

development may hold promise for 

identifying gas-hydrate-bearing sedi-

ments without relying exclusively on 

the presence of a BSR.

• Multiple proxies are required to con-

strain the distribution and concentra-

tion of gas hydrate in natural systems. 

New tools under development will 

continue to enhance our capacity to 

study in situ gas hydrate deposits and 

recovered cores. Of particular note are 

new advances in laboratory imaging 

(infrared, computerized tomography 

and X-ray scanning), LWD, pressure 

coring, and the physical testing of re-

covered cores under in situ pressure. 

• Fluid fl ow that focuses methane from 

a large volume of sediment and re-

sults in transport of methane over 

large distances results in locally high 

methane fl ux and represents one end-

member process that forms massive 

gas hydrate deposits near the seafl oor 

(focused high fl ux, FHF). Diffuse fl uid 

fl ow, or in situ microbial methane 

production results in a low methane 

fl ux and generates gas hydrate depos-

its with distinctly different patterns 

of the distribution and concentration 

(distributed low fl ux, DLF). Most gas 

hydrate provinces contain gas hy-

drates formed by both of these end-

member processes. 

• Just as for conventional hydrocarbon 

provinces, predicting where gas hy-

drate deposits will occur and how they 

will respond to environmental change 

requires integration of high-quality 

regional geophysical, sedimentologi-

cal, and geochemical data. 
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