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T H E  I N D O N E S I A N  S E A S

 Indonesian Seas

Finestructure Variability

The Indonesian seas contain evidence of 

enhanced vertical mixing. Coupled with 

the highly stratifi ed tropical thermocline, 

this enhanced mixing implies large verti-

cal fl uxes of heat and buoyancy from the 

ocean-atmosphere boundary downward 

B Y  A M Y  F F I E L D  A N D  R O B I N  R O B E R T S O N

deep into the water column. To accu-

rately predict climate change requires 

quantifying this vertical mixing and its 

temporal and spatial variability, because 

these fl uxes help regulate ocean heat 

storage and thermohaline circulation. 

We use 18 years of temperature stratifi -

cation data from expendable bathyther-

mographic (XBT) probes to show that 

the fi nestructure associated with mixing 

reveals clear enhancement near topogra-

phy and signifi cant temporal variability. 

We observed a 33 percent decrease in 

fi nestructure in the upper water column 

during El Niño years, suggesting reduced 

mixing, whereas during La Niña years, 

an 18 percent increase in fi nestructure 

suggested enhanced mixing.

Within the Indonesian seas, incoming 

stratifi ed Pacifi c Ocean waters are radi-

cally altered by vertical mixing such that 

the distinctive salinity maxima origi-

nating from the North Pacifi c (salinity 

of 34.8 at 100 m) and the South Pacifi c 

(salinity of 35.4 at 150 m) eventually 

disappear. Consequently, by the time 

the throughfl ow waters leave the Indo-

nesian seas to enter the Indian Ocean, 

they carry homogeneous salinities (34.6) 

throughout the upper thermocline. In 

the upper thermocline, the basin-aver-

aged, time-averaged estimates of vertical 
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Figure 1. Th e fi nestructure in the Indonesian seas region averaged over 18 years between 100 and 300 

m depths and plotted along the XBT transects (5359 profi les). Th e fi nestructure is generally largest 

near topography (e.g., near coastlines, over shallow shelves, and within straits). Two notable regions 

are enclosed by large red circles, the Lifamatola Strait, which has average fi nestructure values greater 

than 1.5 m despite being within a deep and broad strait, and the Ombai Strait, which is also within 

a deep strait and has the largest fi nestructure values (greater than 2.0 m). Bathymetry is grey shaded 

and contoured for 100 and 300 m depths and is solid white for depths greater than 300 m. Th e fi nes-

tructure data are smoothed heavily by a 3° fi lter. “L” and “T” mark the locations of the two example 

XBT profi les shown in Figure 3.
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mixing inferred from these stratifi cation 

changes in the water column are high, on 

the order of 1 x 10-4 m2s-1 (Hautala et al., 

1996; Ffi eld and Gordon, 1996). In con-

trast, two weeks of microstructure mea-

surements in the Banda Sea yield a verti-

cal mixing estimate typical of relatively 

low open-ocean values, 9 x 10-6 m2s-1, 

between 20 and 300 m depth (Alford et 

al., 1999). In this issue, 2-D barotropic 

tides (Ray et al.) and 3-D baroclinic tides 

(Robertson and Ffi eld) are reported, in 

part, to begin to assess the role of tides in 

vertical mixing throughout the Indone-

sian seas. For the small southern Makas-

sar Strait region, a 2-D nonhydrostatic 

model produces tidally generated inter-

nal waves that induce vertical mixing as 

high as 6 x 10-3 m2s-1 (Hatayama, 2004). 

To put the inferred, modeled, and 

measured vertical mixing estimates 

into a larger basin-wide, time-varying 

context, we present an overview of the 

temperature fi nestructure and its vari-

ability in the Indonesian Seas. The 1985 

to 2003 data set is compiled from 5359 

XBT probes deployed monthly along 

commercial shipping lines (Figure 1) by 

volunteer observers as part of the up-

per-ocean observing system network 

(Wijffels and Meyers, 2004). Often, ob-

servations of density inversions and in-

ternal wave vertical strain (the gradient 

of isopycnal displacement) in vertical 

profi le data are used to estimate diapyc-

nal turbulent mixing (e.g., Finnigan et 

al., 2002). However, the limited accuracy 

(± 0.1°C) of the XBT temperature val-

ues (aside from the lack of concurrent 

salinity values) and the large temporal 

and spatial distribution of the XBT pro-

fi les prevent making reliable estimates 

of mixing. Previously, XBT data have 

been used to show the El Niño-Southern 

Oscillation (ENSO) temperature vari-

ability in the Indonesian seas’ thermo-

cline (Bray et al., 1996), which has been 

observed in other temperature data sets 

as well (Sprintall et al., 2003; Ffi eld et 

al., 2000). Here, this time variability can 

be easily observed by spatially averaging 

all the temperature profi les in the 114°E 

to 135°E and 12°S to 2°N Indonesian 

seas region and constructing a single 

time-depth section of temperature (Fig-

ure 2). Ocean temperatures throughout 

the Indonesian seas (and the western 

Pacifi c Ocean) are cooler during El 

Niño years and warmer during La Niña 

years throughout the water column, 

with a maximum signal around 150-m 
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Figure 2. Th e temperature time-depth section averaged over the 114°E to 

135°E and 12°S to 2°N Indonesian seas region. ENSO variability is easily 

observed from the ocean surface down to the bottom of the XBT profi les 

~760 m; this section only shows the upper 300 m of the water column in 

order to expand the mid-thermocline levels, which have the largest ENSO 

signal at ~150 m. Ocean temperatures throughout the Indonesian seas (and 

the western Pacifi c Ocean) are cooler during El Niño years and warmer dur-

ing La Niña years; for example, in this section at 150 m, they attain tempera-

tures ~1.5°C cooler than usual during the El Niño of 1997–1998 when the 

thermocline shallows and temperatures ~1.25°C warmer than usual during 

the La Niña of 1988–1989 when the thermocline deepens. Th e data are 

smoothed by a 20-m vertical fi lter and then a 1-yr horizontal fi lter. 
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Figure 3. Indonesian seas temperature and fi nestructure profi les contrasting the active Li-

famatola Strait with the relatively quiescent Timor Sea. Th e Lifamatola Strait XBT tempera-

ture profi le (a) reveals considerable structure at all depths and vertical scales. In contrast, 

the Timor Sea XBT temperature profi le (c) is relatively smooth at all depths. Regions with 

more fi nestructure may have more mixing. To quantify the fi nestructure observed in a XBT 

temperature profi le, the magnitude of the isotherm vertical displacements (in meters) are 

determined relative to the profi le smoothed by a 10-m block running mean. Calculated in 

this way, the fi nestructure variability of the Lifamatola Strait profi le (b) is large, with a 50 to 

300 m depth average of 3.4 m, refl ecting the considerable vertical temperature structure 

observed in the temperature profi le. In contrast, the Timor Sea fi nestructure variability (d) 

is smaller, with a 50 to 300 m depth average of only 0.7 m, refl ecting the smoother tempera-

ture profi le. Th e 50 m running block average of the fi nestructure is shown in blue.

depth. At 150 m, during the El Niño of 

1997–1998, the temperatures are ~1.5°C 

cooler than usual when the thermo-

cline shallows; during the La Niña of 

1988–1989, the temperatures are ~1.5°C 

warmer than usual when the thermo-

cline deepens.

Visually examining two temperature 

profi les reveals the fi nestructure and how 

it may vary. A Lifamatola Strait tempera-

ture profi le (Figure 3a) reveals consider-

able temperature structure at a range of 

vertical scales from 2–100 m throughout 

the profi le; for example, between 50 and 

100 m, there is a distinct 25°C, 50 m ver-

tical step feature in addition to nearby 

smaller-scale bumps and wiggles in the 

profi le. In contrast, a relatively quiescent 

Timor Sea temperature profi le (Figure 

3c) is relatively smooth throughout. To 

quantify the fi nestructure observed in an 

XBT temperature profi le, we determined 

the magnitudes of the isotherm vertical 

displacements (in meters) relative to the 

profi le smoothed by a 10-m block run-

ning mean. The focus is on fi nestructure 

at 2 to 10 m scales to avoid introducing 

biases from larger-scale circulation-relat-

ed changes in the thermocline. Calculated 

in this way, the fi nestructure variability in 

the Lifamatola Strait profi le (Figure 3b) 

is large, with a 50 to 300 m depth aver-

age of 3.4 m, refl ecting the considerable 

vertical temperature structure observed 

in the temperature profi le. In contrast, 

the Timor Sea fi nestructure variability 

(Figure 3d) is smaller, with a 50 to 300 

m depth average of only 0.7 m, refl ecting 

the smoother temperature profi le. 

To assess the geographic variability, we 

temporally averaged all 18 years of fi n-

estructure results between 100 and 300 

m depths and plotted them on the XBT 

transect map (Figure 1). The fi nestruc-

ture is generally largest near topography 

(e.g., near coastlines, over shallow shelves, 

and within straits). Two notable regions 

are the Lifamatola Strait near 126°E, 2°S, 

which has average fi nestructure values 

greater than 1.5 m despite being within 

a deep and broad strait, and the Ombai 

Strait near 125°E, 8°S, which is also with-

in a deep strait and has the largest aver-

age fi nestructure values (greater than 2.0 

m). When all these data are compiled as a 

function of distance to the nearest 100-m 

topography (not shown), a clear relation 

is evident; the highest fi nestructure val-

ues are adjacent to topography and drop 

off smoothly with distance.

To assess the temporal variability, we 

spatially averaged all the fi nestructure 
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a) Temperature (C) at 150 m

b) Finestructure (m) at 30 m

c) Finestructure (m) at 550 m

d) Niño 3

Indonesian Seas Time Series
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results into single time series. Using ex-

amples highlighting different depths of 

the water column, the time series (Figure 

4) of temperature at 150 m (a), fi nestruc-

ture at 30 m (b), and fi nestructure at 550 

m (c) all reveal ENSO variability when 

visually compared to the Niño 3 index 

(d). During the El Niño of 1997–1998, 

temperatures are cooler throughout the 

water column (Figure 2) and the 150-

m mid-thermocline temperature is 8 

percent cooler than average (Figure 4a). 

However, the fi nestructure is 33 percent 

less than average at 30 m in the upper 

thermocline (Figure 4b), but 29 per-

cent greater than average at 550 m in 

the lower thermocline (Figure 4c). This 

result can be explained by the increased 

(decreased) vertical temperature stratifi -

cation in the upper 100 m (below 100 m) 

during an El Niño (not shown). There is 

also considerable monsoonal variability 

(not shown) in the fi nestructure, with 

much higher values in the upper 100 m 

during the strong June, July, and August 

monsoonal winds. These fi nestructure 

results can be used to put vertical mixing 

estimates into a geographic and temporal 

framework within the Indonesian seas.
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Figure 4. Time series of temperature at 150 m (a), fi nestructure at 30 m (b), and 

fi nestructure at 550 m (c) averaged over the 114°E to 135°E and 12°S to 2°N Indone-

sian seas region. Th e Niño 3 index is shown for comparison in (d). All the variables 

reveal ENSO variability. During the El Niño of 1997–1998, the temperature at 150 m 

is cooler than average (a), as are all the temperatures throughout the water column 

(Figure 2). However, the fi nestructure is less than average at 30 m in the upper water 

column (b), but greater than average at 550 m in the lower water column (c).


