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I N T R O D U C T I O N

In optically shallow waters, i.e., when the bottom is visible through the wa-

ter, a tantalizing variety and level of detail about bottom characteristics are 

apparent in aerial imagery (Figure 1a). Some information is relatively easy to 

extract from true color, 3-band imagery (e.g., the presence and extent of sub-

merged vegetation), but if more precise information is desired (e.g. the species 

of vegetation), spatial and spectral detail become crucial. That such information 

is present in hyperspectral1 imagery is clear from Figure 1b, which illustrates the 

Remote Sensing Refl ectance spectra for several selected points in the image. Spectral 

discrimination among bottom types will be greatest in shallow, clear water and will de-

crease as the depth increases and as the optical water quality degrades. Discrimination 

can also be complicated by the presence of vertical structure in the optical properties of the 

water, or even if there is a layer of suspended material near the bottom (see Box on opposite 

page). Despite these diffi culties, bottom characterization over the range of depths accessible to 

remote sensing is important since it corresponds to a signifi cant portion of the photic zone in 

coastal waters. Mapping bottom types at these depths is useful for applications related to habitat, 

shipping and recreation. The purpose of this paper is to present the issues affecting bottom charac-

terization and to describe various methods now in use. Given space limitations, we refer the reader 

to the references for results and examples of bottom type maps.

1Hyperspectral imagers collect data simultaneously in dozens or even hundreds of narrow, contiguous spectral bands. Th is is in contrast 

to multispectral sensors, which produce images with a few relatively broad wavelength bands.
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Figure 1. (a) A portion of PHILLS-1 image of an area in Barnegat Bay, New Jersey, collected on 23 Aug 2001 illustrating a variety of spectrally diff erent bottom types. (b) Remote sensing 

refl ectance (Rrs) spectra at the water surface for selected points in (a) derived from the Portable Hyperspectral Imager for Low-Light Spectroscopy (PHILLS) data.
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UTILITY OF MAPPING IN THE 

COASTAL ZONE USING PASSIVE 

IMAGE DATA 

Passive optical remote sensing (i.e., imagery 

from aircraft or satellite) provides one of the 

only viable approaches for effectively map-

ping coastal ecosystems. It is useful not only 

for delineating the extent and distribution 

of different bottom types, but also makes it 

feasible to monitor changes in habitat and 

dynamic systems because it is possible to re-

visit a site on a regular basis. Events requir-

ing rapid response (storm events), frequent 

coverage (sediment transport), or periodic 

coverage (monitoring coral beds) can be ac-

commodated relatively inexpensively. 

Active systems that are specifi cally de-

signed for bathymetric mapping are not typ-

ically very effective at distinguishing among 

bottom types. Acoustic systems, which are 

the standard for bathymetric mapping in 

deeper waters (>5 meters), can be adapted 

to make crude bottom type classifi cations 

(Siwabessy et al., 2000). Similarly, lidar ba-

thymetry, which is very effective in optically 

shallow waters where boat operations may 

be diffi cult or when rapid coverage is re-

quired (Guenther et al., 2000), is also capa-

ble of rough bottom characterization. How-

ever, passive optical imagery is much more 

effective for mapping bottom type wherever 

the bottom is visible (up to 20 meters in the 

clearest waters). 
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PREPARING THE DATA

Extracting meaningful results from passive

optical data is a two-step process. First, the 

data are calibrated and the atmospheric 

portion of the signal received at the sensor 

is removed, leaving the “water leaving radi-

ance.” The water leaving radiance is typically 

divided by the incoming solar irradiance to 

produce Rrs, which contains all of the infor-

mation about the water column and ocean 
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Two pairs of fi gures illustrate a case of an existing bottom turbid layer (left) versus a surface turbid layer (right) presumably 

due to an upwelling event. Th e left panel in each pair is the volume scattering function, plotted against depth on the or-

dinate. Th e right panel of each pair is a vertical profi le of the beam-c (attenuation) [magnifi ed by 20x] and the mean sedi-

ment grain diameter in microns. In the turbid bottom layer case, it is the classic behavior of larger grains and larger attenu-

ation hugging the bottom. Th e turbid surface layer is quite diff erent: the beam-c is higher near surface. Th e volume scatter-

ing function (VSF) is weaker and less steep, and the grain size is larger though more scattered in the lower half, despite lower 

beam-c; all these characteristics are probably due to the presence of marine fl ocs.

Quite like the dust layer that establishes itself over 

land under a strong wind, a particle-rich nepheloid 

layer typically exists on the ocean fl oor. Th e dynam-

ics of this layer constitute the area of research called 

bottom boundary layers and sediment transport. 

Th e nepheloid layer has the following four basic 

properties: (1) the layer has a thickness that scales 

with the vigor of the currents on the bottom, k u*/f; 

where k is about 0.41, u* is the bottom friction ve-

locity (=√τ/ρ, τ being bottom frictional stress and ρ 

being water density), and f is the Coriolis parameter, 

(2) the water in the layer is typically most turbid 

at the greatest depth and clears further from the 

boundary, (3) the layer is sustained by a balance 

between gravitational settling and turbulent verti-

cal diff usion counteracting it, and (4) there exists a 

vertical gradient in the concentration of particles 

of any given size, with the gradient being strongest 

for the fastest settling particles. In addition to these 

four basic properties, the dynamics of the bottom 

nepheloid layer are characterized by the stripping of 

sediment off  the seafl oor due to frictional stress of 

water motions so that the availability of sediment at 

the bed may determine the bottom boundary con-

dition for sediments. Whereas all of these proper-

ties are similar to common atmospheric experience, 

waves introduce an additional phenomenon on the 

seafl oor that has no counterpart in the atmosphere. 

Surface gravity waves induce oscillatory motions on 

the seabed. Th is motion, in turn has its own, typi-

cally much thinner boundary layer—a wave bound-

ary layer—that is capable of suspending more bed 

material than an equally strong current. As a result, 

a combination of waves and currents can suspend 

a large amount of material. Th e suspended material 

increases the beam attenuation coeffi  cient c. Con-

versely, the absence of bottom water motion per-

mits the sediment to fall out of suspension, clearing 

the water column. Observations in the nepheloid 

layer have been made quite extensively. Th ese reveal 

a wide dynamic range of changes in the amount of 

sediment carried in the nepheloid layer.

From the standpoint of optics, the nepheloid 

layer complicates bathymetry. For example, the 

suspended particles refl ect light from a LIDAR pulse, 

which stretches a bottom return. Furthermore, as 

light propagates into the nepheloid layer it is ab-

sorbed, so that a weaker laser pulse reaches the bot-

tom. Th e bottom-refl ected energy is again attenu-

ated as it propagates through the nepheloid layer 

up toward the surface. Th is two-way attenuation 

depends on the beam attenuation coeffi  cient c and 

the boundary layer thickness. Given typical order of 

magnitude values for c [~1-30 m-1] and boundary 

layer thickness δ of order 10 m, it is readily appar-

ent that the round-trip attenuation of a laser pulse 

can reach exp(-10) or more. Th us the presence of a 

bottom nepheloid layer can dramatically infl uence 

the visibility of the bottom from above, restricting 

LIDAR bathymetry.

In addition to the bottom resuspension mecha-

nism described above, other more complex process-

es determine the overall water column properties. 

For example, upwelling events can act as conveyor 

belts, carrying to the surface sediment that was 

originally present in the nepheloid layer. In such 

cases, a bottom and surface nepheloid layer can ex-

ist. A surface wind stress may produce thickening of 

the surface layer, leading to interaction of the two, 

and establishment of a more complex columnar 

turbidity structure. Needless to say, given all the 

factors that determine the overall properties of a 

water column, continuing research in the underly-

ing processes is vital to improving our quantitative 

understanding. 

B O T T O M  N E P H E L O I D  L AY E R
B Y  Y O G E S H  A G R A W A L
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bottom. Second, Rrs data are analyzed to re-

trieve the products of interest, such as water 

clarity, bathymetry, and bottom types.

The Portable Hyperspectral Imager for 

Low-Light Spectroscopy (PHILLS; Davis et 

al., 2002) is a hyperspectral imager designed 

specifi cally for characterizing the coastal 

ocean. The main components are a high-

quality video camera lens, an Offner Spec-

trometer that provides virtually distortion 

free spectral images, and a charge-coupled 

device (CCD) camera. The CCD camera 

has a thinned, backside-illuminated CCD 

for high sensitivity in the blue, essential for 

ocean imaging. The instrument is designed 

in such a way that each pixel across the CCD 

array is a different cross-track position in 

the image. For each cross-track position, the 

spectra are dispersed in the corresponding 

vertical column of the array. The along-track 

spatial dimension is built up over time by 

the forward motion of the aircraft yielding a 

three-dimensional image cube. The PHILLS 

imagers are characterized in the laboratory 

for spatial and spectral alignment, stray light 

and other distortions that will need to be 

corrected in the data. The imagers are cali-

brated spectrally using gas emission lamps 

and radiometrically using a large calibra-

tion sphere. Details of the instrument design 

and calibration can be found in Davis et al. 

(2002). Kohler et al. (2002) have developed 

an innovative approach for imaging the in-

tegrating sphere through a variety of colored 

glass fi lters. This approach further improves 

the calibration and, in particular, provides 

a unique approach to correct for the small 

amount of residual stray light that is typical 

of spectrometer instruments. 

Atmospheric correction is done using 

TAFKAA2 (Gao et al., 2000; Montes et al., 

2001), which is the only atmospheric correc-

tion algorithm specifi cally designed to cor-

rect ocean hyperspectral data. The algorithm 

uses lookup tables generated with a vector 

radiative transfer code that includes full po-

larization effects. An additional correction 

is made for skylight refl ected from the wind 

roughened sea surface. Aerosol parameters 

may be determined using the near infra-

red wavelengths pixel by pixel for the entire 

scene, or for a selected region of the image. 

Alternatively, aerosol parameters may be in-

put based on ancillary data collected during 

the experiment. Some experience is generally 

required in the selection of aerosol param-

eters, and other inputs that are appropriate 

for the image. In a typical experiment, the 

Rrs calculated from the calibrated and atmo-

spherically corrected data will be checked 

against ship and mooring measurements to 

ensure a realistic result. 

INTERPRETING THE OCEAN 

SIGNAL 

Many factors affect remotely observed water 

color in shallow waters. First, just as in deep 

water, the water itself (including dissolved 

and particulate material) transforms the 

incident sunlight and refl ects part of that 

light back to the observer. The bottom then 

refl ects part of the incident light in a man-

ner that is highly dependent on the bottom 

material and roughness. There is no simple 

way to separate water-column and bottom 

effects on the measured signal leaving the 

sea surface; however, sediments and bottom 

biota typically refl ect more light than does 

a deep water body, and the refl ected light is 

spectrally different than that of deep water, 

allowing scientists to obtain useful informa-

tion about the bottom even in the presence 

of water-column effects. This is illustrated 

in Figure 2, which shows how water-column 

and bottom effects conspire to generate the 

upwelling radiance above the surface. As 

seen in Figure 2b, three bottom types (sand, 

grass, and black) have distinctly different 

spectra even when seen through the same 

water depth (in this case, 10 m of water).

Bottom albedo (irradiance refl ectance) 

varies substantially among distinct bottom 

types (Figure 2). However, since the bot-

tom is viewed through the water column, 

the useful spectral range is sharply limited 

by spectral attenuation by the water. In very 

shallow waters the useful spectral range is 

from ~400-720 nanometers (nm) (blue to 

near infrared [IR]). Because water is rather 

strongly absorbing in the red and infrared, 

the usable portion of the spectrum for bot-

tom characterization at depths greater than 

a few meters is really ~400-600 nm (blue to 

green). This still leaves a signifi cant range 

of variability due to changes in bottom al-

bedo. Another complicating factor is that 

the bottom refl ectance is directional (i.e., 

the amount of light refl ected changes with 

both the direction of illumination and di-

rection of view). For mathematical simplic-

ity we frequently assume that the bottom is 

2TAFKAA stands for “Th e Algorithm Formerly Known As ATREM”, ATREM (ATmospheric REMoval) being the predecessor algorithm.
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Figure 2. Remote sensing refl ectance (Rrs) of three diff erent bottom types (sand, grass, and a black, 

non-refl ective bottom) seen through clear water at depths of (a) 0.1 m and (b) 10.0 m. Th e spectra 

were simulated using Hydrolight (a radiative transfer model developed by C. Mobley, Sequoia Sci-

entifi c, Inc.) In shallow water, Rrs is only slightly aff ected by the water. In deeper water, scattering and 

absorption by the water signifi cantly alter the refl ectance, but the spectra of the three bottom types 

are still distinct. Note that the non-refl ective bottom is an indication of the water contribution.
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Lambertian, which means that the refl ected 

light is independent of direction. This is ap-

proximately true for at least some bottom 

types such as bare sand, but even where it is 

not, the directional dependence of the color 

is likely to be much less than that of the 

magnitude of the refl ectance. In situations of 

practical interest, the assumption of a Lam-

bertian bottom usually causes errors of less 

than ten percent in computed water-leaving 

radiance (Mobley et al., 2003).

In summary, there are well-proven, for-

ward-radiative transfer models (e.g., Hydro-

light, Sequoia Scientifi c, Inc.) that accurately 

describe the propagation of light through 

the water column, including refl ection from 

the bottom. However, to extract information 

about the water and bottom optical proper-

ties from remote sensing data, an inverse 

model is needed. There are a number of ap-

proaches to the problem of inversion which 

are discussed in the next section.

INVER SION METHODS

Analytical Methods: It would be ideal to 

have an invertible analytical model from 

which one could derive the bottom char-

acteristics directly. However, due to the 

complexity of radiative transfer in optically 

shallow environments, invertible models are 

necessarily simplifi ed analytical models that 

incorporate very limiting assumptions (Gor-

don and Boynton, 1997). They are usually 

designed for a specifi c data set and for op-

eration with a minimum number of wave-

bands. Such models typically assume that 

the water is optically homogeneous and are 

used to solve for the depth assuming that the 

bottom type is uniform (Lyzenga, 1978). Al-

though it is feasible to fi nd a solution for the 
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depth that is independent of bottom type 

(Philpot, 1989), inversion of the analytical 

model requires calibration using at least two 

known depths over each bottom type within 

the scene.

Optimization Approaches: Passive, re-

mote-sensing, bathymetric and bottom char-

acterization algorithms must contend with 

spectral changes caused by optical properties 

of water (assumed to be vertically invari-

ant), depth of the water, and bottom refl ec-

tance. These algorithms must either fi x all 

but one parameter, or must solve for several 

spectral parameters simultaneously. With 

hyperspectral imagery as the data source, a 

multi-parameter model may be expressed as 

a set of linear equations, with one equation 

for each spectral band. However, since all 

parameters but depth are spectral, the set of 

equations will remain underdetermined, and 

the number of possible solutions is infi nite. 

In this case, using hyperspectral data (i.e., 

increasing the number of spectral bands) 

does not help determine the system. How-

ever, the changes in adjacent bands are not 

independent, and the relationship between 

one wavelength and neighboring wave-

lengths can be exploited. This can be best 

accomplished when the number of spectral 

bands is suffi cient to resolve the subtle spec-

tral variations that arise when the magnitude 

of various components change. Additionally, 

using spectral derivatives in addition to the 

standard form allows for expansion in the 

number of equations without altering the 

number of unknowns (Kohler, 2001). This 

in turn expands the equation set, making 

the system no longer underdetermined (Lee, 

1999, Lee et al., 2001). However, expanding 

the equation set introduces a level of com-

plexity in the procedure, making methods of 

optimizing the process necessary.

A variety of continuous and stochas-

tic optimization techniques are available, 

however, determining which are the most 

benefi cial is still an active research topic. 

Optimization, which by its nature is an itera-

tive procedure, can be very time consuming. 

While these approaches have shown initial 

promise, the algorithms are still in an early 

stage of development. 

Look-up Tables: Another effective tech-

nique for extracting environmental informa-

tion from hyperspectral imagery is “look-

up-table” (LUT) methodology, which works 

as follows: a radiative transfer model such as 

Hydrolight is used to generate a large data-

base of Rrs(λ) spectra, which corresponds to 

various water depths, bottom refl ectances, 

and water-column inherent optical prop-

erties (IOPs) for given sky and sea surface 

conditions and viewing geometries. This da-

tabase generation is computationally expen-

sive, but needs to be done only once. To pro-

cess an image, the measured Rrs(l) spectrum 

at each pixel is then compared with the data-

base spectra to fi nd the closest match using a 

least-squares minimization. The Hydrolight 

input depth, bottom refl ectance, and IOPs 

that generated the database spectrum most 

closely matching the measured spectrum are 

then taken to be the environmental condi-

tions at that pixel. This process is illustrated 

in Figure 3. The current technique (Mobley 

et al., 2004) gives a simultaneous retrieval of 

both water column and bottom properties 

and does not require any a priori knowledge 

of the scene.

Neural Networks: The LUT method de-

scribed above requires a large and represen-

tative set of spectra for known conditions. 

Given such a database, a neural network pro-

vides a purely empirical method for char-

acterizing the seafl oor or computing water 

depth (Sandidge and Holyer, 1998). The da-

tabase is used to construct (i.e., “train”) the 

neural network by pairing a large number 

of examples of remote-sensing spectra with 

corresponding values of the desired property 

(e.g., water depth or bottom type). Because 

it is diffi cult to construct a large training 

set with fi eld data, it is usually necessary to 

train a network with numerically simulated 

refl ectance spectra for a randomized variety 

of different bottom types, water depths, wa-

ter properties, and illumination conditions 

using Hydrolight or an equivalent radia-

tive transfer code (Mobley et al., 1993). The 

resulting data set is split into two parts: a 

training set and a smaller testing set. The re-

mote-sensing refl ectance values of the train-

ing set are used as inputs to the neural net-

work, with the network output being trained 

on one or more of the variables (e.g., water 

depth). During training, the same train-

ing data are passed through the network 

many times and the network is improved on 

each pass. Periodically the network is tested 

against the testing set, and the training stops 

when the performance of the network on the 

testing set stops improving (and begins to 

worsen).

When applied to real, remote-sensing 

data, a neural network will give the best re-

sults if the inputs used to generate the simu-

lated training and testing sets fully cover, 

but do not greatly go beyond, the natural 
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Figure 3. An image of Adderly Cut, Lee Stocking Island, Bahamas from the PHILLS hyperspectral scanner. Each pixel in the image represents the spectral remote sensing refl ectance (Rrs) at that 

point. Th e observed spectrum is then compared to a look-up table (LUT), a database of spectra compiled for a wide range of depths, bottom types, and water types. Th e depth and bottom type of 

the best-fi t modeled spectrum is then associated with the image pixel.

variability of the site being studied. To pre-

vent the network from learning to extract 

information from very small features in the 

remote-sensing spectra, one should add ar-

tifi cial noise to the simulated data before 

using it to train the network. The magnitude 

of this artifi cial noise should be at least as 

large as the noise level anticipated in real-

world, remote-sensing data. Once a network 

is constructed for a specifi c region and sen-

sor (as defi ned by the wavelength bands and 

noise levels), no further training is necessary. 

A major advantage of the neural network 

is that once established the network can be 

used with very large data sets effi ciently (i.e., 

computation time is generally not a limita-

tion). 

The contrast between the LUT and neu-

ral net methods is interesting. It is relatively 

easy to expand, or change the database for 

the LUT method, but every image spectrum 

must be compared with most if not all of 

the spectra in the database. Performing the 

analysis on millions of spectra in an image 

can be time consuming. In contrast, with 

neural networks, the effort is in construct-

ing the network. Since the network is very 

dependent on the specifi c data set used for 

training, it is diffi cult and time-consuming 

to change the database and retrain the net-

work. Image analysis, however, can be ac-

complished in real time.
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Figure 4. Comparison of backscatter (bb) at 555 nm derived from airborne and satellite imagery of the LEO-15 study site along 

the coast of southern New Jersey on July 31, 2001: (a) a mosaic of high-spatial-resolution (10 m Ground Sample Distance [GSD]) 

imagery from the airborne PHILLS sensor and (b) low-spatial-resolution (1000 m GSD) imagery from the SeaWiFS satellite. Th e 

images cover the same region and are mapped to the same grid. Th e land end of the PHILLS 2 fl ight lines are shown in brown on 

the SeaWiFS image for orientation. 

TEMPOR AL AND SPATIAL 

VARIABILITY

Scale issues impact both water column and 

bottom studies. Since the bottom is viewed 

through the water column with remote-

sensing imagery, it is necessary to distinguish 

whether the signal variability observed at 

the sensor is due to variability in the water 

or to the bottom component. In general, the 

temporal scales of variability are longer for 

bottom processes than for water-column 

processes. The gross characteristics of the 

bottom do not change as rapidly as those in 

the water column, where fl uid motion re-

sponds to the constant forcing from waves 

and currents. Spatial scales of variability are 

generally of greater importance in bottom 

characterization studies because temporal 

variations usually occur relatively slowly. In 

fact, steady state is often assumed for periods 

less than a week or two, unless a major storm 

alters the bottom features. Although micro- 

and fi ne-scale spatial distributions of bot-

tom type are of ecological interest (e.g., epi-

phyte distributions on a single seagrass blade 

or within a seagrass community), the instru-

mentation, aircraft, and satellite remote sen-

sors available to examine the hyperspectral 

character of the bottom are designed to col-

lect data at somewhat larger scales (meters to 

kilometers).

In addition, issues of scale must be con-

sidered when comparing in situ and re-

motely sensed measurements, and when 

comparing remotely sensed measurements 

from sensors with different spatial resolu-

tions. How close in time were the measure-

ments collected? Do the measurements 

contain information from the same area? 

For example, when a spot on the ground is 
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observed with a 10 cm fi eld-of-view in situ 

instrument, a 2 m fi eld-of-view aircraft sen-

sor, and a 30 m fi eld-of-view satellite sensor, 

how much of the observed variability is sim-

ply a result of the differing resolutions (i.e., 

subpixel variability)? Thus, issues of spatial 

resolution go hand-in-hand with issues of 

spatial variability; one must employ the 

proper measurement tools and analysis tech-

niques to match the processes and scales of 

interest. To illustrate this concept, coincident 

PHILLS and SeaWiFS imagery are compared 

in Figure 4. These images represent the back-

scatter coeffi cient at 555 nm derived from 

the Rrs (after calibration and atmospheric 

correction) using the same semi-analytical 

backscatter algorithms. The hyperspectral 

PHILLS spectral channels were combined 

to match the SeaWiFS (Casey et al., 2001). 

These algorithms do not account for the 

infl uence of bottom refl ectivity and assume 

optically deep water. However, note that an 

identical color table has been applied and 

very similar values of the backscatter co-

effi cient are shown for both images from 

two separate sensors. This suggests that the 

calibration and atmospheric correction are 

correct; so, the in-water algorithms retrieve 

almost coincident backscattering values 

for the two different sensors. Given these 

identical retrieved values, we can illustrate 

that the increase spatial resolution (10 m) 

from PHILLS is required in coastal waters 

to resolve the changing optical conditions. 

Not only does SeaWiFS lack the spectral 

resolution to characterize bottom types (as 

discussed above; it has only eight spectral 

channels), but also the one-kilometer pixel 

size precludes it from resolving many coastal 

features readily apparent in the ten-meter-

resolution hyperspectral PHILLS imagery.

SUMMARY

Although diffi culties clearly remain, the ca-

pacity for characterizing bottom types in 

optically shallow waters is feasible. It is also 

clear that hyperspectral data are best suited 

for meaningful and consistent classifi cation 

of bottom types, especially in the presence 

of spatial variability in optical water quality. 

In this paper, we have demonstrated bot-

tom classifi cation using a number of data 

analysis tools. Such tools may prove essential 

for monitoring an increasingly dynamic and 

endangered coastal zone.
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