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A multispectral optical sensor collects data 

at select wavebands or channels. An example 

is the Sea-viewing Wide-Field-of-view Sen-

sor (SeaWiFS) ocean color satellite, which 

measures eight wavebands between 402 and 

885 nm (20-40 nm bandwidth with peaks 

centered around 412, 443, 490, 510, 555, 670, 

765, and 865 nm). Optical oceanographers 

have been using multispectral sensors since 

the 1980s with great success1.

A hyperspectral sensor gives continuous 

spectral coverage over a broad wavelength 

range [at least over visible wavelengths, 

and preferably from near ultraviolet (UV) 

to near infrared (IR)] with better than 10 

nm resolution. The utility of hyperspectral 

measurements has long been recognized in 

fi elds as diverse as geology and astronomy, 

and hyperspectral instruments have been 

used in oceanographic research for about 30 

years. However, most of these instruments 

have been laboratory bench-top spectro-

photometers and radiometers that measure 

absorption and radiance or irradiance at <10 

nm continuous spectral resolution from the 

UV to IR wavelengths. These instruments 

were relatively slow with sample scan rates 

on the order of minutes to maximize signal 

to noise. Just a decade ago, computational 

limitations also made processing and stor-

age of large amounts of hyperspectral data 

diffi cult. However, within the last fi ve years, 

high sample rate (less than seconds) in situ 

and remote sensing hyperspectral sensors 

have been developed and utilized for various 

coastal and open-ocean studies. Advances in 

computer technology in the last decade have 

enabled more rapid processing of hyperspec-

tral data and greatly improved the storing 

and archiving capability of these large, and 

often diffi cult-to-manage data sets. 

Hyperspectral technology has expanded 

from hand-held radiometers to submerged 

sensors for measurements of inherent op-

tical properties (IOPs), optical properties 

that depend on only the aquatic medium 

itself (e.g., absorption and scattering; Mo-

bley, 1994) and apparent optical properties 

(AOPs), which depend on the IOPs and the 

geometry of the light fi eld. Recently, hy-

perspectral airborne detectors have been 

enhanced for high spectral and spatial reso-

lution measurements of ocean radiance and 

refl ectance. Although multispectral sensors 

have a higher signal to noise ratio for the 

same quality of optical components (be-

cause they integrate over a larger bandwidth 

and thus collect more photons each band), 

the sensitivity and data quality of hyper-

spectral sensors are rapidly increasing and 

costs are coming down. Thus the shift from 

multispectral to hyperspectral systems will 

continue. The availability of hyperspectral 

sensors opens a new door for optical ocean-

ography and related fi elds that make use of 

optical remote sensing of the oceans. Here, 

we discuss a few of the scientifi c advantages 

to using high spectral resolution sensors and 

describe valuable hyperspectral applications 

in the marine environment. 

1See special issues: “Hydrologic Optics” in Limnology and Oceanography, 34(8), 1989; “Ocean Color From Space: A Coastal 

Zone Color Scanner Retrospective” in Journal of Geophysical Research, 99(C4), 7291-7270, 1994; and “Ocean Optics” in 

Journal of Geophysical Research, 100(C7), 13,133-13,372, 1995). 
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SPECTR AL TECHNIQUES

Traditionally, multispectral remote sensors 

have been utilized for characterizing open-

ocean waters. Some results have shown that 

a few, wide, carefully selected bands may 

be all that is needed to monitor these water 

bodies whose optical signatures are domi-

nated by chlorophyll a and co-varying opti-

cally signifi cant constituents. However, when 

these open ocean algorithms (O’Reilly et al., 

1998) are applied to coastal areas, the results 

are less useful, if not altogether inapplicable 

(Hu et al., 2000; Lee and Carder, 2002). The 

coastal ocean is an optically complex envi-

ronment. For example: (1) phytoplankton 

populations are generally more abundant 

and less diverse, (2) terrestrial infl uences 

[high concentrations of colored dissolved 

organic matter (CDOM) and particles] 

cannot be ignored, (3) the infl uence of the 

ocean bottom (bottom refl ectance and sedi-

ment resuspension) is important, and (4) 

high temporal and spatial variability collude 

to create an optically diverse environment. 

Not only do these infl uences complicate the 

characterization of the water and bottom 

types, but also make the atmospheric correc-

tion of these scenes diffi cult. Traditional blue 

water atmospheric corrections (e.g., “black 

pixel” assumptions; Siegel et al., 2000) are 

no longer valid. These correction methods 

assume that any remote sensing signal at the 

IR wavelengths is due to the atmosphere, 

but this assumption does not hold in high 

sediment or optically shallow coastal waters. 

Thus, the successful removal of the atmo-

spheric interference in the water-leaving 

radiance signal within the coastal environ-

ment requires a priori knowledge of a host 

of atmospheric constituents (e.g., water col-

umn vapor, aerosol type and density, ozone 

concentration). Without a priori knowledge, 

these constituents must be derived from the 

spectral data stream itself, decreasing the 

degrees of freedom with which to resolve 

the water leaving radiance signal. Addition-

ally, the increased development along the 

world’s coastal boundaries adds a degree of 

complexity in the determination of concen-

tration and interactions between the ma-

rine and terrestrial aerosols, such that the 

atmospheric parameterization may change 

dramatically within a single scene. Hyper-

spectral information provides optical ocean-

ographers the potential to accurately correct 

remote sensing images and classify complex 

oceanic environments, fi ner-scale features 

(e.g., bottom type and characteristics and 

phytoplankton blooms), and depth-depen-

dent IOPs. 

With higher spectral resolution data (i.e., 

more wavelengths) come more degrees of 
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freedom for optical models and empirical 

algorithms. Many ocean color algorithms 

in use today involve empirical relationships 

between the property of interest (i.e., chloro-

phyll a concentration, IOPs, etc.) and wave-

band ratios of remote sensing refl ectance or 

water-leaving radiance (O’Reilly et al., 1998). 

Most of these algorithms are derived by re-

gressions of radiance at select (or available) 

wavebands or waveband ratios versus the 

property of interest. Naturally, the regression 

results are maximized at the highest num-

ber of statistically independent wavelengths 

available. Also, the spectral resolution of 

derived IOPs is limited by the number of 

wavebands of the ocean color remote sens-

ing data used in the regression. 

Multispectral measurements of absorp-

tion are useful for determining the relative 

concentrations and variability of the differ-

ent constituents in the water column: water 

itself, phytoplankton, CDOM, and inorgan-

ics (Schofi eld et al., In press and references 

therein). Absorption peaks of chlorophyll a, 

non-pigmented troughs, and the exponen-

tial slopes of CDOM and inorganic material 

are well distinguished in absorption spec-

tra collected by most multispectral sensors. 

However, in order to identify phytoplankton 

by taxonomic group or species, quantifi -

cation of the absorption by accessory or 

marker pigments beyond chlorophyll a is 

oftentimes necessary. Some accessory pig-

ments are unique to individual phytoplank-

ton taxa and usually cannot be discerned in 

absorption spectra with a limited number of 

wavelengths or wavebands (accessory pig-

ment peaks are generally narrow), but can 

be discriminated in hyperspectral data. This 

discrimination can be accomplished with 

various methods such as spectral unmixing 

and deconvolution, Gaussian decomposi-

tion, and derivative analysis (usually taken 

to the fourth derivative) together with simi-

larity index analysis (e.g., Millie et al., 1997; 

Schofi eld et al., In press). These decomposi-

tion analyses are techniques that separate 

pigment peaks and shoulders from troughs 

in phytoplankton absorption curves of 

mixed assemblages. The similarity index is 

typically used to correlate measured absorp-

tion with known phytoplankton absorption 

curves for identifi cation purposes by taking 

into account the differences in shapes be-

tween two spectra based on the peaks and 

troughs of each spectrum. These identifi ca-

tion techniques usually cannot be applied 

to multispectral data because the required 

features (i.e., peaks and troughs) are not well 

resolved.

While the absorption properties of nu-

merous planktonic species and other water 

column constituents have been studied ex-

tensively, the same cannot be said for their 

backscattering properties. Backscattering 

properties must be known in order to ac-

curately interpret ocean color measure-

ments because the refl ectance of the upper 

ocean is directly related to the ratio of the 

backscattering coeffi cient to the absorption 

coeffi cient. Hyperspectral backscattering 

measurements can be used to distinguish 

phytoplankton populations from co-varying 

seawater constituents because the spectral 

dependence of backscattering by algal cells 

is different from that of other particles (Bri-

caud et al., 1983; Stramski et al., 2001). Also, 

hyperspectral backscatter measurements in 

the laboratory have revealed that some phy-

toplankton species may show complex, high-

ly distinct backscattering spectra between 

species (cultured) (Bricaud et al., 1983; Ahn 

et al., 1992) whereas other microorgan-

isms, such as bacteria and fl agellates, show 

wavelength independent backscatter (Morel 

and Ahn, 1990, 1991). These studies and the 

results of numerous modeling efforts (see 

Stramski et al., 2001 and references therein) 

demonstrate that backscatter is not spectral-

ly fl at (as it is oftentimes modeled) or easily 

predicted for all particles. Therefore, back-

scatter has the potential to provide a means 

to identify phytoplankton by group or spe-

cies and to determine particle characteristics. 

This provides incentive for the development 

of in situ hyperspectral backscatter sensors 

and algorithms. 

EXA MPLES OF HYPER SPECTR AL 

ANALYSES

Hyperspectral data used in combination 

with spectral techniques such as derivative 

analysis, spectral angle mapping, spectral 

deconvolution, and similarity indices can aid 

in the characterization of marine ecosystems 

including the detection and identifi cation of 

harmful algal blooms, an increasing prob-

lem in the world’s coastal oceans (Millie et 

al., 1997; Lohrenz et al., 1999). For example, 

Figure 1 shows phytoplankton absorption 

spectra for a red tide species, Karenis bre-

vis, measured with a multispectral sensor, 

a hyperspectral sensor, and modeled us-

ing Mie theory (following Mahoney, 2001). 

K. brevis can be identifi ed by its accessory 

pigment, Gyroxanthin–diester, which has 

unique absorption peaks at 444 and 469 nm 

(Örnólfsdóttir et al., 2003). As seen in Figure 

1, the multispectral spectrum lacks detailed 

Hyperspectral information provides optical oceanographers 

the potential to accurately correct remote sensing images and 

classify complex oceanic environments, fi ner-scale features...

and depth-dependent [inherent optical properties].
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radiative transfer model (Mobley, 1994). 

Water 1 is 6.5 m and has low chlorophyll a 

and CDOM concentrations with a bottom 

type of a mixture of soft coral and Sargas-

sum, while Water 2 is 13 m deep, “pure wa-

ter” with a fl at green sponge bottom type. By 

inspection of the hyperspectral spectra, the 

difference between the two curves is obvious 

in the 500-600 nm range. However, spectra 

for the two water types produced using only 

the SeaWiFS wavebands appear almost iden-

tical (note: the SeaWiFS spectra were derived 

by applying the SeaWiFS spectral response 

function to the hyperspectral signatures). A 

second example, Figure 3, shows 122 remote 

sensing refl ectance spectra generated by Hy-

drolight for various combinations of nine 

different sets of IOPs, 32 different bottom 

refl ectances, and 22 depths between 5.5 and 

50 m. These spectra are clearly unique. How-

ever, every spectrum has nearly the same 

remote sensing refl ectance wavelength ratio: 

Rrs(490)/Rrs(555) = 1.71 ± 0.01. This ratio, 

if used in the SeaWiFS Ocean Chlorophyll 2 

(OC2) band-ratio algorithm (O’Reilly et al., 

1998, as revised on http://seawifs.gsfc.nasa.

gov/SEAWIFS/RECAL/Repro3/OC4_repro-

cess.html), gives a chlorophyll concentra-

tion of 0.59 ± 0.01 mg Chl m-3. Thus these 

simulated water bodies, which have IOPs 

corresponding to chlorophyll concentrations 

between 0.0 (pure water) and 0.2 mg Chl 

m-3, are all viewed as the same by the OC2 

algorithm. The OC2 algorithm fails here 

because of bottom effects in optically clear 

waters simulated by Hydrolight.

While much of the interest in hyper-

spectral approaches relates to the visible 

wavebands, several oceanic constituents of 

interest have distinct spectral signatures 

in the UVA/UVB (e.g., Ogura and Hanya, 

1966). Chief among these is nitrate, a ma-

jor plant nutrient that limits the primary 

production of organic matter in many re-

gions of the world’s oceans. The net vertical 

absorption information, i.e., pigment peaks 

by distinguishing accessory pigments, due 

to a limited number of wavebands. Hyper-

spectral data allow for the detection of spe-

cies-discriminating accessory pigments and 

are more adequate for comparing measured 

spectra to a reference spectrum for similar-

ity index analysis (Figure 1). Wood et al. 

(2002) have also used these techniques and 

presented evidence that distinctive hyper-

spectral signatures are associated with Syn-

echococcus blooms in upwelling and nutrient 

enrichment systems in the Gulf of Califor-

nia. Cannizzaro et al. (2002) show that it is 

possible to utilize multispectral techniques 

(SeaWiFS) to detect K. brevis. However, their 

method works only for waters under certain 

optical conditions (low concentrations of 

CDOM and suspended sediments relative to 

chlorophyll a or low backscattering relative 

to absorption) as different ocean color prod-

ucts (particulate backscattering and its rela-

tionship to chlorophyll a) are used as proxies 

for K. brevis abundance. 

In the past, multispectral techniques have 

been used for the derivation of water depth 

and bottom bathymetry (e.g., Philpot, 1989; 

Maritorena et al., 1994), and more recently 

for characterization of bottom type (see 

“Light in Shallow Waters” in Limnology and 

Oceanography, 48(2), 2003). These analy-

ses generally involve empirical algorithms, 

where refl ectance waveband ratios are re-

gressed against water depth. Wavelength lim-

itations and commonly employed assump-

tions that the water optical properties are 

vertically uniform and constant over the area 

being mapped can lead to inaccurate retriev-

als of bottom depth and characteristics un-

der certain conditions. These retrievals can 

be improved with hyperspectral data (Lee 

and Carder, 2002 and references therein). 

For example, Figure 2 shows hyperspectral 

remote sensing refl ectance spectra for two 

water types generated by the Hydrolight 
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Figure 3. Chlorophyll concentration algorithms designed for multispectral instru-

mentation may not be useful for shallow, optically clear waters. Shown here are one 

hundred twenty two Hydrolight-generated remote sensing refl ectance (Rrs) spectra for 

Bahamian waters using various combinations of nine diff erent sets of IOPs, 32 diff erent 

bottom refl ectances, and 22 depths between 5.5 and 50 m. Th ese spectra are clearly 

unique. However, every spectrum has nearly the same remote sensing refl ectance 

wavelength ratio: Rrs(490)/Rrs(555) = 1.71 ± 0.01 (490 and 555 nm are indicated by the 

vertical black dashed lines). If this ratio were applied to the commonly used SeaWiFS 

band-ratio algorithm (OC2; O’Reilly et al., 1998), it would give a chlorophyll concen-

tration of 0.59 ± 0.01 mg Chl m-3. In other words, the same chlorophyll concentration 

would be determined for all 122 spectra despite the fact that these simulated water 

bodies have IOPs corresponding to chlorophyll concentrations between 0.0 (pure 

water) and 0.2 mg Chl m-3. Th e OC2 algorithm fails here because of bottom eff ects in 

optically clear waters.

Figure 2. Bottom eff ects in shallow coastal waters may lead to inaccurate remote 

sensing retrievals of bottom depth if limited spectral bands are utilized for analysis. 

Th is fi gure shows modeled hyperspectral (solid lines) and multispectral (SeaWiFS 

wavebands; circles) spectra for two water types, generated by the Hydrolight radia-

tive transfer model (Mobley, 1994). Water 1 (blue) is 6.5 m deep and has low chlo-

rophyll-a and CDOM concentrations with a bottom type of a mixture of soft coral 

and Sargassum, while Water 2 (green) is 13 m deep, “pure water” with a fl at green 

sponge bottom type. By inspection of the hyperspectral spectra, the diff erence be-

tween the two curves is obvious in the 500-600 nm range. However, spectra for the 

two water types produced using only the SeaWiFS wavebands appear almost iden-

tical. (SeaWiFS spectra in this fi gure were derived by applying the SeaWiFS spectral 

response function to the hyperspectral signatures). 

Figure 1. Phytoplankton taxonomic group or species identifi cation is now achiev-

able with the development of hyperspectral instruments; generally narrow accessory 

pigment absorption wavelength peaks that are unique to specifi c species can be 

discerned. Shown here are three diff erent methods used to measure phytoplankton 

absorption spectra for a red tide species, Karenis brevis, on the west Florida shelf. 

Closed circles symbolize absorption measured with a multispectral sensor (ac-9). Open 

circles signify data modeled using Mie theory (following Mahoney, 2001), and plus 

signs represent data measured with a hyperspectral sensor (HiStar). It is apparent in 

this fi gure that the multispectral spectrum lacks the distinguishing accessory pigment 

peaks due to a limited number of wavebands. Hyperspectral data, however, allow for 

the detection of species-discriminating accessory pigments and are more adequate for 

comparing measured spectra to a reference spectrum and thus phytoplankton species 

identifi cation. K. brevis can be identifi ed by its accessory pigment, Gyroxanthin–dies-

ter, which has unique absorption peaks at 444 and 469 nm (Örnólfsdóttir et al., 2003). 

(Multispectral data were provided by Oscar Schofi eld and John Kerfoot, Rutgers Uni-

versity and hyperspectral data were provided by Steven Lohrenz, University of South-

ern Mississippi.)
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transport of nitrate, for example, constrains 

the export fl ux of organic matter from the 

surface ocean in a steady-state sense. Nitrate 

dissolved in seawater exhibits a broad ab-

sorption maximum centered at ~210 nm; it 

competes with the absorption of bromide, 

a conservative component of sea-salt, and 

to a lesser extent, the carbonate ion (Figure 

4). In anaerobic areas, sulphide also absorbs 

in a band around 220 nm and various dis-

solved organic compounds of oceanographic 

and practical purposes (e.g., TNT) exhibit 

absorption maxima in the UV. Past attempts 

to estimate the concentration of nitrate and 

other compounds with multispectral instru-

ments have been met with equivocal suc-

cess. The introduction of a fi eld-deployable 

hyperspectral UV absorption spectrometer, 

i.e., the In Situ Ultraviolet Spectrometer 

(ISUS), coupled with advanced spectro-

scopic deconvolution techniques, has made 

routine spectral measurements of nutrients 

possible (Johnson and Coletti, 2002; Figure 

4). Oceanographers are now able to resolve 

nitrate concentrations in the ocean at tem-

poral and spatial scales consistent with mea-

surements of temperature and salinity and 

to an accuracy and precision more than ac-

ceptable for oceanographic biogeochemical 

investigations, as a direct result of a hyper-

spectral approach to the problem. 

SUMMARY AND CONCLUSIONS

Hyperspectral technology provides a means 

for optical oceanographers to classify and 

quantify complex oceanic environments (in 

situ and remotely): bottom depth and type, 

particle characteristics, depth-dependent 

IOPs, and specifi c chemical compounds. 

Hyperspectral data enable, for the fi rst time, 

a real attempt at environmental spectros-

copy. In situ and remote phytoplankton 

taxonomic group or species identifi cation 

is now achievable with the development of 

hyperspectral instruments; generally narrow 

accessory pigment absorption wavelength 

peaks that are unique to specifi c species can 

be discerned. High spectral resolution back-

scattering spectra are unique to some phy-

toplankton species and can aid in the char-

acterization of oceanic particles. One other 

exciting aspect of hyperspectral technology 

is the development of optically based chemi-

cal sensors. These sensors allow for long-

term monitoring of ecologically important 

nutrients and potentially harmful pollutants 

at unprecedented time and space scales. 

Hyperspectral instrumentation is becom-

ing increasingly important to oceanographic 

research as coastal and open ocean observ-

ing systems are rapidly developing into key 

elements for scientifi c research, monitoring, 

decision-making, science education, and 

outreach. Some concerns of these observa-

tories are that autonomous sampling plat-

forms can be limited by weight and volume 

and data bandwidth capabilities. The incor-

poration of hyperspectral sensors to autono-

mous sampling platforms of an observing 

system can expand the amount of informa-

tion gained from one instrument without 

compromising platform payload. High 

spectral resolution sensors provide a greater 

number of wavelengths for various analysis 

techniques, particularly in optically complex 

coastal environments. In addition, emerging 

cabled observatories offer exceptional power 

and data bandwidth for hyperspectral sen-

sors. 

Optical oceanographers have been posing 

hyperspectrally-related questions since the 

popularity of ocean exploration expanded 

in the 1950s. However, technological and 

computing constraints limited us to the 

use of multispectral or even single wave-

length sensors in our fi eld studies. Now that 

computing power has become more than 

adequate to handle large quantities of data 

and technology has allowed miniaturiza-

tion of in situ and remotely sensed optical 

ABOVE AND PRECEDING THREE SPREADS: 

Th ree bands (RGB= 666, 547, 439 nm) from 

a March 23, 1996 Airborne Visible/Infrared 

Imaging Spectrometer (AVIRIS) image taken 

over the Florida Keys from an ER-2 aircraft at 

20 km above ground. Th e top of the image 

is near the eastern end of the Keys; the bot-

tom of the image is near the western end. Th e 

rough heading is 260 degrees (clockwise from 

north) top to bottom (i.e., just south of west). 

AVIRIS is an optical sensor that delivers cali-

brated images of upwelling spectral radiance in 

224 contiguous spectral channels (bands) with 

wavelengths from 400 to 2500 nanometers. 

Note that this image is not atmospherically 

corrected. It is pi*radiance/[mean_solar_ir-

radiance_at_the_top_of_the_atmosphere * 

cos(solar_zenith_angle)]. Original data cour-

tesy of NASA/JPL. Caption courtesy of Marcos 

Montes of Naval Research Laboratory, 

Washington D.C.
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sensors, we have been able to utilize hyper-

spectral instruments in the fi eld to answer a 

host of scientifi c questions that were never 

before possible. This is an exciting time for 

oceanographers. New spectral algorithms 

and techniques will be further developed 

and refi ned as high spectral resolution tech-

nologies are improved for IOP sensors for 

measurements of absorption, attenuation, 

scattering, backscattering, and the volume 

scattering function. Potentially, a suite of 

relatively small, robust hyperspectral in-

struments will be available to measure and 

resolve bottom depth and type, particle size 

and type (including phytoplankton species 

identifi cation), and micro- and macro-nu-

trient concentrations in situ in the very near 

future. 

REFERENCES
Ahn, Y.H., Bricaud, A., and A. Morel, 1992: Light back-

scattering effi ciency and related properties of some 

phytoplankters, Deep-Sea Res., 39, 1835-1855.

Bricaud, A., Morel, A., and L. Prieur, 1983: Optical ef-

fi ciency factors of some phytoplankters, Limnol. 

Oceanogr., 28, 816-832.

Cannizzaro, J.P., K.L. Carder, F.R. Chen, and C.A. Heil, 

2002: Remote detection of red tide blooms on the 

west Florida shelf: A novel classifi cation technique, 

Ocean Optics XVI, CD-ROM.

Figure 4. Nitrate is a major plant nutrient that limits the primary production of organic 

matter in many regions of the world’s oceans. Nitrate dissolved in seawater exhibits a broad 

absorption maximum centered at ~210 nm. Th e introduction of a fi eld-deployable hyper-

spectral UV absorption spectrometer, known as In Situ Ultraviolet Spectrometer (ISUS), 

coupled with advanced spectroscopic deconvolution techniques, has made routine spectral 

measurements of nutrients possible at unprecedented time and space scales. Th e specifi c 

molar absorption of bromide (black, dotted line) and nitrate (black, solid line) are shown 

with the absorption spectrum of whole water (red line; 1 nm resolution) measured with the 

ISUS (MBARI/Satlantic Inc.) deployed on a Conductivity-Temperature Depth profi ler (CTD) 

at 150 m depth in the western Equatorial Pacifi c. Most of the variance in absorption is ex-

plained by bromide; advanced deconvolution techniques are required to extract the concen-

tration of nitrate (here 14.9 M) based on its absorption.

Hu C., K.L. Carder, and F.E. Muller-Karger, 2000: Atmo-

spheric Correction of SeaWiFS Imagery over Turbid 

Coastal Waters: A Practical Method, Rem. Sens. Envi-

ron., 74(2), 195-206.

Johnson, K.S., and L.J. Coletti, 2002: In situ ultraviolet 

spectrophotometry for high resolution and long-

term monitoring of nitrate, bromide and bisulfi de in 

the ocean, Deep-Sea Res. I, 49, 1291-1305.

Lee, Z.P., and K.L. Carder, 2002: Effect of spectral band 

numbers on the retrieval of water column and bot-

tom properties from ocean color data, Appl. Opt., 41, 

2191-2201.

Lohrenz, S.E., G.L. Fahnenstiel, G.J. Kirkpatrick, C.L. 

Carroll, and K.A. Kelly, 1999: Microphotometric 

assessment of spectral absorption and its potential 

application for characterization of harmful algal spe-

cies, J. Phycol., 35, 1438-1446.

Mahoney, K., 2001: Optical properties of Karenis bre-

vis and implications for remote sensing refl ectance, 

Ph.D. Dissertation, University of Southern Missis-

sippi.

Maritorena, S., A. Morel, and B. Gentili, 1994: Diffuse 

refl ectance of oceanic shallow waters: Infl uence of 

water depth and bottom albedo, Limnol. Oceanogr., 

39, 1689-1703.

Millie, D.F., O.M. Schofi eld, G.J. Kirkpatrick, G. John-

sen, P.A. Tester, and B.T. Vinyard, 1997: Detection 

of harmful algal blooms using photopigments and 

absorption signatures: A case study of the Florida red 

tide dinofl agellates, Gymnodinium breve, Limnol. 

Oceanogr., 42(5, part 2), 1240-1251.

Mobley, C.D., 1994: Light and Water: Radiative Transfer 

in Natural Waters, Academic Press, San Diego, 592 

pp.

Morel, A.,and Y.H. Ahn, 1990: Optical effi ciency factors 

of free-living marine bacteria: Infl uence of bacterio-

plankton upon the optical properties and particulate 

organic carbon in oceanic waters, J. Mar. Res., 48, 

145-175.

Morel, A., and Y.-H. Ahn, 1991: Optics of heterotrophic 

nanofl agellates and ciliates: A tentative assessment 

of their scattering role in oceanic waters compared 

to those of bacterial and algal cells, J. Mar. Res., 49, 

177-202. 

Ogura, N., and T. Hanya, 1966: Nature of ultra-violet 

absorption in sea water, Nature, 212, 758-759.

Örnólfsdóttir, E.B., J.L. Pinckney, and P.A. Tester, 2003: 

Quantifi cation of the relative abundance of the toxic 

dinofl agellate, Karenia brevis (Dinophyta), using 

unique photopigments, J. of Phycol., 39(2), 449-457.

O’Reilly, J.E., S. Maritorena, B.G. Mitchell, D.A. Siegel, 

K.L. Carder, S.A. Garver, M. Kahru, and C. McClain, 

1998: Ocean color chlorophyll algorithms for Sea-

WiFS, J. Geophys. Res., 103(C11), 24,937-24,953.

Philpot, W.D., 1989: Bathymetric mapping with passive 

multispectral imagery, Appl. Opt., 28, 1569-1578.

Schofi eld, O., T. Bergmann, M.J. Oliver, A. Irwin, P.W. 

Bissett, M.A. Moline, and C. Orrico, In press: Inver-

sion of the bulk absorption in the Mid-Atlantic Bight 

and its utility for water mass analysis in optically 

complex coastal waters, J. Geophys. Res.

Siegel, D., M. Wang, S. Maritorena, and W. Robinson, 

2000: Atmospheric correction of satellite ocean color 

imagery: The black pixel assumption, Appl. Opt., 

39(21), 3582-3591. 

Stramski, D., A. Bricaud, and A. Morel, 2001: Modeling 

the inherent optical properties of the ocean based on 

the detailed composition of planktonic community, 

Appl. Opt., 40, 2929-2945.

Wood, M., W.S. Pegau, W.K. W. Li, C.C. Trees, J.L. Muel-

ler, and H. Maske, 2002: Optical signatures of a Syn-

echococcus bloom in the Gulf of California, Ocean 

Optics XVI, CD-ROM.


