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Introduct ion  
Data assimilation is the process of combining our 

knowledge of a system, including both observations 
and dynamics, to produce estimates of the state of a 
system. The state of a system, or state variable, 
describes the physical, chemical, or biological environ- 
ment. Real, four-dimensional systems are generally 
under-sampled. This is particularly true in the coastal 
marine environment where there is a broad range of rel- 
evant time and space scales. There is inadequate spatial 
or temporal resolution in the measurements. Variables 
of interest cannot be measured adequately, or we wish 
to predict the future. These problems may be addressed 
through judicious application of data assimilation. 

Given that within the coastal and estuarine environ- 
ment there is substantial need for data 
assimilation, what  approaches are 
likely to be successful? What can we 
learn from the meteorological 
community? Here, we describe data 
assimilation procedures and provide a 
limited set of examples of coastal 
marine atmospheric and oceano- 
graphic assimilation. These examples provide some 
guidance for developing data assimilation in the coastal 
and estuarine marine environment. 

When data are abundant, 
these techniques may be used 

to produce acceptable 

field es t imates . . .  

A S S I M I L A T I O N  P R  0 C E D  U R E S  

The following discussion is intended to provide a 
general overview of assimilation procedures, to define 
important terms, to explain key concepts. For further 
information, consult Bennett (1992), Ghil and 
Malanotte-Rizzoli (1991), or Robinson et al. (1998). 
There are two distinct classifications of data assimila- 
tion commonly  applied: filters and smoothers.  
Schematics of these procedures are shown in Figure 1. 
Both classifications incorporate a dynamical model. 
Dynamical models for meteorology and oceanography 
are implemented as numerical algorithms. Without a 
dynamical model, the process is simply an analysis or 

gridding of the data. Our discussion begins with data 
gridding procedures because these are components of 
many assimilation processes and may be used for data 
visualization or model-data intercomparison. 

Data G r i d d i n g  
Data gridding procedures are generally forms of 

statistical or functional interpolation. This subject is well 
covered by Daley (1991). The most common statistical 
technique is Gauss-Markov smoothing known to meteo- 
rologists and oceanographers as objective analysis 
(Bretherton, Davis, and Fandry, 1976). This analysis 
procedure minimizes the expected error subject to 
knowledge of the covariances and sampling. While not 

generally recognized, this procedure 
can be used to estimate a quantity that 
is different from the quantity mea- 
sured or even produce estimates from 
multi-variate data sets. For instance, 
given measurements of upper-ocean 
velocity the dynamic pressure field 
may be estimated (Walstad et al., 1991). 

This approach is used extensively for producing initial 
condition estimates from moving and stationary plat- 
forms. Other techniques using empirically derived 
weightings of nearby points or spline interpolation have 
been used as well. When data are abundant, these tech- 
niques may be used to produce acceptable field esti- 
mates but these techniques do not exploit our knowl- 
edge of system behavior. 

Filters 
We first consider the case of a filter (Figure 1). 

Suppose that data were collected at times t 0, t, . . . . .  t ,  
and regard the final data collection time as the current 
time. The initial data are used to describe an initial 
condition for the numerical model, (b0. This is accom- 
plished by a gridding algorithm applied to the data at 
time t o as described above. The initial conditions for 
each aspect of the state variable must be estimated for 
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each grid point of the numerical model. This generally 
means that statistical, dynamical, or functional extrap- 
olations must be used to estimate unmeasured quanti- 
ties. It is common to use empirical orthogonal func- 
tions or dynamical modes to extrapolate from upper 
ocean measurements (Spall and Robinson, 1990; 
Walstad et al., 1991). Some components of the state 
variable are not measured. For instance, vertical veloc- 
ity is not routinely measured in the atmosphere or 
ocean. These components must be specified through 
additional dynamical constraints. Meteorologists use 
normal mode initialization to place the initial solution 
of the numerical model on the slow manifold (Daley, 
1991). The slow manifold is the solution that is slowly 
evolving in time and is not dominated by gravity wave 
energy. Oceanographers generally initialize models 
with fields that are in geostrophic balance, though 
near-shore and estuarine applications require other 
approaches. 
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Figure 1. (a) An idealized schematic of the fi'ltering algorithm. OA is a 
gridding procedure. Typically, this is objective analysis. M is the nzodeL R 
is the residual calculation. K represents the residual gridding procedure. (b) 
An idealized schematic of the smoothing algorithm. OA is a gridding pro- 
cedure. Typically, this is objective analysis. M(p) is the ntodel which 
depends upon a set of parameters, p. R is the residual calculation. ~ repre- 
sents the residual gridding procedure. 

Given a full set of initialization fields, the model is 
integrated forward to time t,. Regional and coastal mod- 
els generally require boundary conditions specified on 

the model grid points at the edge of the computational 
domain. These may be estimated from measurements or 
be derived from a data assimilation system estimating 
the larger scales. The model field at time t 1, (b~',is an 
intermediate estimate. If no data from time t~ have been 
used to provide boundary conditions then this interme- 
diate estimate is a forecast. The next step in the process 
is to difference the model from the observations at the 
observation locations. This residual at time t 1, r,, is then 
gridded using operator K to produce an update to the 
intermediate estimate, A~bl. 

This update is added to the intermediate estimate, cb~' 
to produce the analysis, ~b~=qb,'+G~b,. This is used as the 
initial condition for the next iteration of the sequential 
filter. The set of analyses, ~b~,qb~ . . . . .  ~bn, is the product of 
this procedure. When constructed in near real-time, 
these analyses are considered nowcasts. Forecasts are 
constructed by integrating the dynamical model into 
the future. 

If the gridding operator is the Kalman gain matrix, 
then the procedure is the Kalman Filter (KF). For 
relatively simple models, the KF has been applied but 
the computational expense for typical coastal systems is 
prohibitive. Alternatives to the KF have been construct- 
ed. To a certain extent, these methods can be placed into 
the formalism of the KF and regarded as approxima- 
tions to the KF. These methods include direct insertion, 
wherein the data values replace model values at the 
locations of the measurements. This is equivalent to 
assuming that the data are perfect and that errors in the 
model forecast are uncorrelated. Blending of the data 
into the model using subjectively derived weighting 
functions is a modification of the direct insertion tech- 
nique. Nudging or Newtonian damping has been 
applied as an assimilation tool (Anthes, 1974). The 
procedure involves adding a forcing term to the 
dynamical model that drives the model toward the 
observations. The rate of nudging must be smoothly 
varying in time and space and must be small. The 
technique can be effective and is relatively easy to 
implement. See Fukumori and Malanotte-Rizzoli (1995) 
for an example. 

The optimal interpolation (OI) or statistical interpola- 
tion (SI) method is accomplished by empirically 
assigning the gain. A common procedure is to specify 
the error covariance matrix and use the objective analy- 
sis procedure to calculate the gain matrix and grid the 
residuals to produce the update, A(b~ (e.g. Robinson, 
1999). A procedure not widely used in oceanography is 
the method of successive corrections whereby the 
update is constructed by iterating upon scales or 
processes (Daley, 1991). This procedure recognizes that 
there are different processes and scales acting within the 
fluid and that each of these scales and processes has an 
error covariance with different structure. For instance, 
geostrophic velocities are correlated with the local 
normal gradient in sea surface elevation, while 

48 Oceanography • VoL 13 • No. 1/2000 



ageostrophic velocities are correlated with the local sea 
surface elevation. Alternatively, a three-dimensional 
variational scheme could be applied to minimize the 
difference between the analysis and the data (Daley, 
1991). 

Smoothers 
The smoother is an inverse method; given the output 

of a system, the parameters that control the system are 
determined. These parameters can include the initial 
condition, the boundary conditions, any adjustable 
parameters of the dynamical model, and possibly a 
dynamical error term. 

The basic algorithm for a smoother is shown in 
Figure 1. A fundamental difference between filters and 
smoothers is the impact of the data. Within a smoothing 
algorithm, the data may impact the entire set of field 
estimates. Whether or not data actually have an impact 
on the entire set of field estimates depends upon the 
dynamics of the system. Most smoothers also differ in 
objective. Whereas a filter is designed to minimize the 
expected error of each field estimate (analysis), most 
smoothers are designed to minimize the difference 
between the set of field estimates and the data. This dif- 
ference is described by a cost-function. Cost functions 
penalize the difference between the solution and the 
available measurements. Smoothness of initial and 
boundary conditions may be an additional component 
of the cost function or may be imposed by limiting the 
realizable initial and boundary conditions. 

As with the filters, an initial condition may first be 
estimated from available data through a gridding pro- 
cedure (Figure 1). The model is then integrated 
throughout the inversion period, and the data-model 
differences are calculated. The inversion algorithm 
determines how to modify the initial condition, the 
parameters of the model, or the forcing functions. When 
the minimization modifies the parameters to achieve 
the minimum of the cost function, the procedure is 
referred to as parameter estimation. There are two 
important classes of smoothers, strong constraint and 
weak constraint. For strong constraint methods, the 
solution satisfies the dynamical system. With weak con- 
straint methods, there is an error term that is added to 
the model system and the cost function. For each of 
these methods, there are several approaches to achiev- 
ing the minimum. 

The appropriate approach to minimizing the cost 
function depends upon the particular system, the 
adjustable parameters, and the available data. 
Techniques include the adjoint method, the representer 
method, the Kalman smoother, steepest descent, conju- 
gate gradient, and simulated annealing (Bennett, 1992). 
The term adjoint method has been applied to a number 
of algorithms and therefore the details of each applica- 
tion must be consulted (Wunsch, 1996; Robinson et al., 
1998). The representer method has been applied to 
current meter data from Massachusetts Bay (Bogden et 

al., 1996). Stochastic (Evensen, 1994) and hybrid 
methods (Lermusiaux and Robinson, 1999) are being 
developed and applied. 

E X A I V I P L E  A P P L I C A T I O N S  

Regional Atmospheric Assimilation 
The ETA atmospheric model (Black, 1994) provides 

the large scale atmospheric fields for both the Coastal 
Ocean Forecast System (COFS) and also as input to the 
Chesapeake Bay Local Analysis and Prediction System 
(CBLABS) (Fuell et al., 1999). The ETA model fields are 
produced as a standard NOAA product and used for 
routine forecasting. The Chesapeake Bay LAPS system 
is a regional application of the LAPS system (Albers, 
1996). This system provides a structure for ingesting 
data from the atmospheric data streams and modeling 
systems. Data from local sources including buoys, 
commercial aircraft, and locally identified meteorologi- 
cal data are collected and gridded onto a fine-scale (4 
km) atmospheric-grid. 

The CBLAPS analysis is used as the initial condition 
for the Chesapeake Bay implementation of the Regional 
Atmospheric Modeling Systems (CBRAMS) (McQueen 
et al., 1999). This system integrates the non-hydrostatic 
equations of motion to produce forecasts. The near 
surface wind prediction shows several important char- 
acterisfics (Figure 2). Typically, as the air moves from 
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Figure2. Chesapeake Bay wind forecast field from the Regional 
Atmospheric Modeling System (RAMS)forecast for 4:00 EDT, May 1, 
1999 (from T. Gross, NOS/NOAA and J. McQueen, NOAA/OAR). 
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above the land to over the water, particles accelerate 
due to reduced drag. This acceleration is dependent 
upon the boundary layer dynamics affected by land- 
sea-air temperature differences, humidity, and bound- 
ary layer structure. The difference between land and 
water also leads to channeling of the wind along the 
axis of the estuary. Sea breezes result in w i n d - r e v e r s a l s  
over the water during the late afternoon in summer. 
These processes are not well represented with measure- 
ments that are primarily located over land. Data assim- 
ilation with sufficient resolution and appropriate 
physics can reproduce these important marine atmos- 
pheric phenomena. 

R e g i o n a l  C o a s t a l  O c e a n o g r a p h i c  
A s s i m i l a t i o n  

The Chesapeake Bay Experimental Forecast System 
(CBEFS) (Gross et al., 1999) uses the wind-field from 
CBRAMS to drive a barotropic shallow water model of 
Chesapeake Bay to nowcast and forecast water level in 
Chesapeake Bay. The open boundary condition at the 
Bay mouth is determined by water level measured at 
the Chesapeake Bay Bridge Tunnel (CBBT). As 
configured, this system is a filter. The CBEFS now- 
cast/forecast cycle consists of nowcasts conducted with 
up-to-date height data from the CBBT and winds from 
CBRAMS. The nowcast surface height field serves as 
the initial condition for the forecast that extends 48 
hours into the future (Figure 3). The open boundary 
condition at CBBT is forecast using a combination of 
persistence, the astronomical tide, and a storm surge 
model forecast. 

Offshore, the Coastal Ocean Forecast System (COFS) 
nowcasts and forecasts the full three-dimensional water 
column using the Princeton Ocean Model (POM) 
(Breaker et al., 1999). The assimilation is a filter. Sea 
surface temperature from satellite data and temperature 
profiles from XBT data are used to update the model. 
Surface data are extrapolated to depth by a mixed layer 
adjustment algorithm. Altimeter assimilation is now a 
component of the quasi-operational COFS and has 
already been observed to reduce some of the difficulties 
previously observed where the Gulf Stream separates 
from the coast. An example of the type of sea surface 
temperature field produced from this model is seen in 
Figure 4. The quality of the analyses is being assessed 
by comparison to independent data. Comparisons have 
demonstrated levels of skill (Kelly et al., 1998.). 

Note that while this is a coastal forecasting system, 
the domain is much larger than the region of the 
shelf/slope. The region of influence and the quality of 
the boundary condition information determine the loca- 
tions of open boundaries in the dynamical model. The 
region of influence is the area that will impact the 
region of interest during the course of the assimilation. 
The region of influence shrinks when there are more 
data to assimilate because the more data assimilated the 
more the model is constrained to behave as the real 

ocean does. With less data, the region of influence 
expands so that errors on the boundary do not over- 
whelm the region of interest solution. When very good 
data are available on the boundaries, the boundaries 
should be close to the region of interest to maximize the 
influence of this boundary data. The COFS boundaries 
are currently forced by climatological values; the 
boundaries must be far from the region of interest so as 
not to adversely impact the field estimates. 

B i o l o g i c a l  A s s i m i l a t i o n  
The practice of assimilating biological and chemical 

data into ocean models is immature (Hoffman and 
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Figure 3. Nowcast and forecast of water level at Solomons Island for May 
7,1999; produced by the CBEFS. Shown are gauge observations (black solid 
line), the astronomical tide prediction (black dotted line), the previous fore- 
cast (blue dash-dot line), and the current nowcast (red dash line), and fore- 
cast (red dash-dot line). 

Lascara, 1999). There has been substantial progress in 
the parameter estimation problem for zero-dimensional 
planktonic ecosystem models (e.g. Lawson et al., 1996; 
Fasham and Evans, 1995), but comparatively little has 
been done in the context of spatially explicit frame- 
works (e.g. Ishizaka, 1990). Difficulties arise from the 
paucity of data and poorly understood biological 
dynamics. Progress is being made with approaches that 
fully exploit the available data and best understood 
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components of the biological dynamical system. This 
approach has been used in a study of the seasonal vari- 
ation in climatological abundance of the calanoid cope- 
pod Pseudocalanus spp. in the Gulf of Maine Georges 
Bank (McGillicuddy et al., 1998). 

A smoothing technique was applied to determine the 
sources and sinks of plankton through the inversion of a 
relatively simple transport model. An illustrative exam- 
ple of the results from McGillicuddy et al. (1998) is 

Figure 4. Sea surface temperature estimate from the Coastal Ocean 
Forecast System (COFS) (from J. Thiebaux, NOAA/NCEP) 

shown in Figure 5. From the period January-February to 
March-April, the inferred biological source term consists 
of strong growth (red shading) on the crest of the bank 
and moderate growth (yellow shading) in a coastal strip 
just offshore of Cape Ann. Data assimilation will 
provide an improved understanding of the population 
and the population dynamics. As these techniques 
mature, the information generated undoubtedly will 
lead to improved management of natural resources. 

Observing Systems Simulation 
Experiments 

While data assimilation can provide the best estimate 
of the state of a system for a given data set, effective 
sampling strategies are critical to the production of 
useful field estimates. The effectiveness of any sam- 
pling strategy is ultimately deter- 
mined by the accuracy with which the 
observations can be used to recon- 
struct reality, the state of the natural 
system being measured. Given limit- 
ed opportunity for evaluation of sam- 
piing strategies against objective crite- 
ria with purely observational means, 

As these techniques mature, 
the information generated 
undoubtedly will  lead to 
improved management 

of  natural resources. 

numerical models offer an attractive framework for 
investigation of these issues. The approach begins with 
the construction of a simulation characteristic of the 
natural system. The simulation serves as a representa- 
tion of reality, which is then sub-sampled in a specified 

fashion to produce a simulated data set. The simulated 
data are then fed into the analysis or data assimilation 
procedure to produce field estimates. Direct compari- 
son of the reconstructed field with the original simula- 
tion thus provides a quantitative evaluation of that par- 
ticular combination of sampling strategy and analysis 
or assimilation methodology. This approach, an 
Observational System Simulation Experiment (OSSE), 
originated in dynamic meteorology (e.g. Charney et al., 
1969) and is recognized as an important tool for the 
development of oceanographic sampling systems 
(Robinson et al. I 1998). 

One aspect of sampling that is particularly amenable 
to assessment with the OSSE is the synopticity of spatial 
surveys. A set of measurements is synoptic if it is col- 
lected in a time interval that is short enough that the 
underlying distribution does not change appreciably. 
OSSEs provide a means to quantify the extent to which 
dynamics in the underlying field can compromise the 
fidelity of a map generated from data collected over a 
finite time interval. The procedure consists of the fol- 
lowing three steps: (1) sub-sampling model output 
along a realistic cruise track, (2) objectively mapping the 
simulated data, and (3) comparing the analysis with an 
instantaneous snapshot from the original model 
calculation. Of course, this estimate of the space/time 
smearing associated with the sampling strategy is robust 
only to the extent to which the model simulation used as 
the basis for the OSSE is representative of the real ocean. 

Discussion 
Data assimilation is an effective tool for estimating 

and predicting the coastal ocean environment. While 
most current methods use relatively sophisticated 
dynamical models and relatively simple filtering tech- 
niques to assimilate data, advances in computational 
power and numerical techniques are rapidly increasing 
our ability to use more sophisticated data assimilation 
methods. We anticipate that data assimilation will 
become a routine procedure for estimating the coastal 
environment just as it is for atmospheric phenomena. 

The importance of wind-stress for physical circula- 
tion and the coupling of biological and physical 
processes in the coastal ocean require that accurate 
wind stress fields be applied. As demonstrated with the 

RAMS fields, the availability of fine- 
scale atmospheric data assimilation 
models can give the oceanographic 
community the stress fields needed to 
force coastal circulation models. These 
atmospheric modeling systems also 
produce estimates of additional 
atmospheric fields such as visibility 

and precipitation. Near population centers, these 
systems are useful for understanding and predicting 
pollution patterns as well. The widespread application 
of these models will be of significant benefit to the 
coastal marine and estuarine community. 
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Figure 5. Bi-monthly climatological Pseudocalanus spp. distributions (adults only) derived from the 
MARMAP data (number of animals m ~) for (a) January-February, and (b) March-ApriL Panel (c) shows 
the source term which results from the population dynamics inversion. The remaining panels show the 
remaining terms in the advection-diffusion-reaction equation averaged over the period of integration: (d) 
advective flux divergence, (e) diffusive flux divergence, and (f) overall tendency. Fields in the bottom four 
rows have been normalized to the bottom depth, so the units are number of animals m-2s -1. The sign con- 
vention is such that the overall tendency equals the sum of advection, diffusion and source terms. 

A lesson from the meteorological community is the 
utility of a system for ingesting data, melding model 
fields, and gridding. The LAPS provides this frame- 
work for meteorology. An oceanographic analog of 
LAPS will permit the efficient implementation of 
coastal and estuarine assimilation systems. To accom- 
plish this goal will require an important enabling 
technology, standardization and regularization of data 
streams. Widely adopted standards for data and model- 
field communication will facilitate the exchange of 
information. The coastal and estuarine oceanographic 
community must learn from the experience of the 
meteorological community. 

Another lesson from the meteorological experience is 
the utility of larger scale assimilation 
systems for estimating and predicting 
the region surrounding our region of 
interest. These estimates will permit 
improved offshore boundary condi- 
tions for coastal and regional models. 
This can greatly reduce the computa- 
tional expense and complexity of sys- 
tems targeting the coastal environment. There are sev- 
eral major efforts underway. We have mentioned COFS 
as a component of the CMDP. COFS will include the 
Gulf of Mexico; the research version of COFS has 
already been integrated in this larger domain. The U.S. 
Navy's  Fleet Numerical Meteorology and 
Oceanography Center (FNMOC) has a system for the 
west coast (Clancy et al., 1996). FNMOC is also rtmning 
global models at lower resolution. Following the lead of 

the atmospheric community, we 
should work toward suitable trans- 
fer of boundary condition informa- 
tion from the large-scale global 
models to the mesoscale regional 
coastal models, and then to the fine- 
scale coastal models. 

Finally, most coastal regions 
have model simulations if not pro- 
totype assimilation systems. These 
should be exercised to perform 
OSSEs. These OSSEs can be used, in 
combination with the intuition and 
experience of regional oceanogra- 
phers, to evaluate and design 
observing systems. The OSSE sam- 
piing can be assimilated into the 
numerical model to evaluate the 
assimilation process. This approach 
can be used to iteratively improve 
the observational network and the 
assimilation process to produce 
improved field estimates. 

Advances in sensor technology 
and numerical dynamical models 
are providing a new set of tools for 
sampling and simulating our envi- 

ronment. Data assimilation provides the means for com- 
bining these tools to estimate and predict the marine 
environment. Scientists, managers, mariners, and inhab- 
itants of the coastal environment will benefit immensely 
from the improving ability to estimate the state of our 
environment and the mechanisms by which our envi- 
ronment changes. 

R E F E R E N C E S  
Albers, S., 1996: The LAPS wind analysis. Weather and 

Forecasting, 10, 342-352. 
Anthes, R.A., 1974: Data assimilation and initialization of 

hurricane prediction models. J. Atmos.  Sci., 31, 702-709. 
Bennett, A.F., 1992: Inverse Methods in 

A lesson from the 
meteorological community 
is the utility of a system 

for ingesting data, melding 
model fields, and gridding. 

R. Signell, 

Physical O c e a n o g r a p h y .  C a m -  
b r i d g e  University Press, New 
York, New York. 

Black, T.L., 1994: The new NMC Eta 
model: description and forecast 
examples. Weather and Forecasting, 9, 
265-278. 

Bogden, ES., P. Malanotte-Rizzoli and 
1996: Open-ocean boundary conditions 

from interior data: Local and remote forcing of 
Massachusetts Bay. J. Geophys. Res., 101(C3), 6487-6500. 

Breaker, L.C., L.D. Burroughs, Y.Y. Chao, D.M. Feit and 
D.B. Rao, 1999: NCEP participation in the Coastal 
Marine Demonstration Project. Preprints, Third 
Conference on Coastal A tmospher ic  and Oceanic 
Prediction and Processes, New Orleans, LA, Amer. 
Meteor. Soc., 195-200. 

52 Oceanography * Vol. 13 • No. 1/2000 



Bretherton, F. P., R.E. Davis and C.B. Fandry, 1976: A 
technique for objective analysis and design of oceano- 
graphic experiments applied to MODE-73. Deep-Sea 
Research, 23, 559-582. 

Charney, J., M. Halem and R. Jastrow, 1969: Use of 
incomplete historical data to infer the present state of 
the atmosphere. J. Atmos. Sci., 19, 159-72. 

Clancy, M., P.W. deWitt, P.W. May and D.S. Ko, 1996: 
Implementation of a coastal ocean circulation model 
for the West Coast of the United States. Proceedings of 
the American Meteorological Society Conference on 
Coastal Oceanic and Atmospheric Prediction, January 
29-February 2, Atlantia, GA, 72-75. 

Daley, R., 1991: Atmospheric Data Analysis. Cambridge 
University Press, New York, New York. 

Evensen, G., 1994: Sequential data assimilation with a 
nonlinear quasi-geostrophic model using Monte 
Carlo methods to forecast error statistics. J. Geophys. 
Res., 99(C5), 10143-10162. 

Fasham, M.J.R. and G.T. Evans, 1995: The use of opti- 
mization techniques to model marine ecosystem 
dynamics at the JGOFS station at 47N, 20W. Phil. 
Trans. R Soc. Lond. B., 348, 203-209. 

Fuell, K.K, J.G.W. Kelly and J. McQueen, 1999: The 
development of high resolution analyzed wind fields 
for the Chesapeake Bay region. Preprints, Third 
Conference on Coastal Atmospheric and Oceanic 
Prediction and Processes, New Orleans, LA, Amen 
Meteor. Soc., 184-188. 

Fukomori, I. and P. Malanotte-Rizzoli, 1995: An approx- 
imate Kalman filter for ocean data assimilation: an 
example with one idealized Gulf Stream model. J. 
Geophys. Res., 100, 6777-6793. 

Ghil, M. and P. Malanotte-Rizzoli, 1991: Data assimila- 
tion in meteorology and oceanography. Advances in 
Geophysics, 33. Academic Press, San Diego, CA, pp. 
1414266. 

Gross, T.F., F. Aikman, J. McQueen, K.K. Fuell, K. Hess 
and J.G.W. Kelly, 1999: Water level model response to 
wind forcing over the Chesapeake Bay during the 
Coastal Marine Demonstration Project. Proceedings, 
Sixth International Conference on Estuarine and Coastal 
Modeling, New Orleans, LA, American Society of 
Civil Engineers, in press. 

Hoffman, E. E. and C. M. Lascara, in press: A review of 
predictive modeling for coastal marine ecosystems. 
In: Coastal Ocean Prediction, C.N.K Mooers, Ed., 
Coastal and Estuarine Studies, American 
Geophysical Union, Washington, D.C. 

Ishizaka, J., 1990: Coupling CZCS data to a physical- 
biological model of the southeastern U.S. continental 
shelf ecosystem, part 3. Nutrient and phytoplankton 
fluxes and CZCS data assimilation. J. Geophys. Res., 
95, 20,201-20,212. 

Kelly, J.G.W., F. Aikman, L.C. Breaker and G.L. Mellor, 
1998: A Coastal Ocean Forecast System for the U.S. 
East Coast. NCEP/EMC/OMB contribution number 
142. 

Lawson, L.M., E.E. Hofmai~l and Y.H. Spitz, 1996: Time 
series sampling and data assimilation in a simple 
marine ecosystem model. Deep Sea Res. 43(2-3), 625- 
651. 

Lermusiaux, P.F.J. and A.R. Robinson, 1999: Data assim- 
ilation via error subspace statistical estimation. 
Submitted to Monthly Weather Review. 

McGillicuddy, D.J. Jr.; D.R. Lynch, A.M. Moore, W.C. 
Gentleman, C.S. Davis and C.J. Meise, 1998: An 
adjoint data assimilation approach to diagnosis of 
physical and biological controls on Pseudocalanus 
spp. in the Gulf of Maine-Georges Bank region. Fish. 
Oceanogr., 7 (3-4), 205-218, Dec 1998. 

McQueen, J.T., G.D. Rolph, F. Aikman, J.G.W. Kelly, T. 
Gross, G. Szilagyi, K.K. Fuell, C. Tremback and J. 
Titlow, 1999: Development and Evaluation of a Non- 
hydrostatic Atmospheric Prediction System for the 
Chesapeake Bay Region. Preprints, Third Conference 
on Coastal Atmospheric and Oceanic Prediction and 
Processes, New Orleans, LA, Amer. Meteor. Soc., 189- 
194. 

Robinson, A.R., P.F.J. Lermusiaux and N.Q. Sloan, III, 
1998: Chapter 20. Data Assimilation. In: The Sea, 10, 
K.H. Brink and A.R. Robinson, eds., John Wiley and 
Sons, Inc., New York, New York. 

Robinson, A.R., 1999: Forecasting and Simulating 
Coastal Ocean Processes and Variabilities with the 
Harvard Ocean Prediction System. Coastal Ocean 
Prediction, Coastal and Estuarine Studies, 56, 77-99. 

Spall, M.A. and A.R. Robinson, 1990: Regional primitive 
equation studies of the Gulf Stream meander and ring 
formation region. J. Phys. Ocean. 20, 985-1016. 

Walstad, L.J., J.S. Allen, P.M. Kosro and A. Huyer, 1991: 
Dynamics of the coastal transition zone through data 
assimilation studies. J. Geophys. Res. 96 (C8), 14,959- 
977. 

Wunsch, C., 1996: The Ocean Circulation Inverse Problem. 
Cambridge University Press, Cambridge, 456pp. 

Oceanography ~, VoL 13 • No. 1/2000 53 


