Oceanography The Official Magazine of
The Oceanography Society

Volume 27 | Number 1 | March 2014

Special Issue: Changing Ocean Chemistry

On the Cover: Deployment of the NIOZ-built water sampling system from R/V Pelagia during GEOTRACES cruise 64PE373 in the Mediterranean Sea. The system has 24 × 24 L PVDF pristine samplers mounted on an all-titanium ultraclean CTD frame using a metal-free Kevlar hydrowire. Photo credit: Micha Rijkenberg, Royal Netherlands Institute for Sea Research (NIOZ)
Cover PDF
Volume 27 Issue 01
SPECIAL ISSUE FEATURES

FROM THE GUEST EDITORS • Changing Ocean Chemistry: An Introduction to This Special Issue
Froelich, F., and J.W. Farrington. 2014. Changing ocean chemistry: An introduction to this special issue. Oceanography 27(1):12–15, https://doi.org/10.5670/oceanog.2014.03.

Deep Ocean Carbonate Chemistry and Glacial-Interglacial Atmospheric CO2 Changes
Yu, J., R.F. Anderson, and E.J. Rohling. 2014. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes. Oceanography 27(1):16–25, https://doi.org/10.5670/oceanog.2014.04.

Ocean (De)oxygenation Across the Last Deglaciation: Insights for the Future
Jaccard, S.L., E.D. Galbraith, T.L. Frölicher, and N. Gruber. 2014. Ocean (de)oxygenation across the last deglaciation: Insights for the future. Oceanography 27(1):26–35, https://doi.org/10.5670/oceanog.2014.05.

Was the Late Paleocene-Early Eocene Hot Because Earth Was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth's Cenozoic Climate
Froelich, F., and S. Misra. 2014. Was the late Paleocene-early Eocene hot because Earth was flat? An ocean lithium isotope view of mountain building, continental weathering, carbon dioxide, and Earth’s Cenozoic climate. Oceanography 27(1):36–49, https://doi.org/10.5670/oceanog.2014.06.

GEOTRACES: Changing the Way We Explore Ocean Chemistry
Anderson, R.F., E. Mawji, G.A. Cutter, C.I. Measures, and C. Jeandel. 2014. GEOTRACES: Changing the way we explore ocean chemistry. Oceanography 27(1):50–61, https://doi.org/10.5670/oceanog.2014.07.

Quantifying the Impact of Atmospheric Deposition on the Biogeochemistry of Fe and Al in the Upper Ocean: A Decade of Collaboration with the US CLIVAR-CO2 Repeat Hydrography Program
Grand, M.M., C.S. Buck, W.M. Landing, C.I. Measures, M. Hatta, W.T. Hiscock, M. Brown, and J.A. Resing. 2014. Quantifying the impact of atmospheric deposition on the biogeochemistry of Fe and Al in the upper ocean: A decade of collaboration with the US CLIVAR-CO2 Repeat Hydrography Program. Oceanography 27(1):62–65, https://doi.org/10.5670/oceanog.2014.08.

A Dusty Planet
Duce, R.A. 2014. A dusty planet. Oceanography 27(1):66–68, https://doi.org/10.5670/oceanog.2014.09.

Anthropogenic Lead Emissions in the Ocean: The Evolving Global Experiment
Boyle, E.A., J.-M. Lee, Y. Echegoyen, A. Noble, S. Moos, G. Carrasco, N. Zhao, R. Kayser, J. Zhang, T. Gamo, H. Obata, and K. Norisuye. 2014. Anthropogenic lead emissions in the ocean: The evolving global experiment. Oceanography 27(1):69–75, https://doi.org/10.5670/oceanog.2014.10.

Mercury in the Anthropocene Ocean
Lamborg, C., K. Bowman, C. Hammerschmidt, C. Gilmour, K. Munson, N. Selin, and C.-M. Tseng. 2014.  Mercury in the anthropocene ocean. Oceanography 27(1):76–87, https://doi.org/10.5670/oceanog.2014.11.

In Praise of Marine Chemists
Froelich, F. 2014. In praise of marine chemists. Oceanography 27(1):88–91, https://doi.org/10.5670/oceanog.2014.12.

Fukushima and Ocean Radioactivity
Buesseler, K.O. 2014. Fukushima and ocean radioactivity. Oceanography 27(1):92–105, https://doi.org/10.5670/oceanog.2014.02.

Scientific Outcomes and Future Challenges of the Ocean Carbon and Biogeochemistry Program
Benway, H.M., and S.C. Doney. 2014. Scientific outcomes and future challenges of the Ocean Carbon and Biogeochemistry Program. Oceanography 27(1):106–107, https://doi.org/10.5670/oceanog.2014.13.

Historical and Future Trends in Ocean Climate and Biogeochemistry
Doney, S.C., L. Bopp, and M.C. Long. 2014. Historical and future trends in ocean climate and biogeochemistry. Oceanography 27(1):108–119, https://doi.org/10.5670/oceanog.2014.14.

Changing pH in the Surface Ocean
Pilson, M.E.Q. 2014. Changing pH in the surface ocean. Oceanography 27(1):120–125, https://doi.org/10.5670/oceanog.2014.15.

A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification
Bates, N.R., Y.M. Astor, M.J. Church, K. Currie, J.E. Dore, M. González-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and J.M. Santana-Casiano. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27(1):126–141, https://doi.org/10.5670/oceanog.2014.16.

Particle Flux in the Deep Sargasso Sea: The 35-Year Oceanic Flux Program Time Series
Conte, M.H., and J.C. Weber. 2014. Particle flux in the deep Sargasso Sea: The 35-year Oceanic Flux Program time series. Oceanography 27(1):142–147, https://doi.org/10.5670/oceanog.2014.17.

Interannual and Subdecadal Variability in the Nutrient Geochemistry of the Cariaco Basin
Scranton, M.I., G.T. Taylor, R. Thunell, C.R. Benitez-Nelson, F. Muller-Karger, K. Fanning, L. Lorenzoni, E. Montes, R. Varela, and Y. Astor. 2014. Interannual and subdecadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography 27(1):148–159, https://doi.org/10.5670/oceanog.2014.18.

A Plea for Temperature in Descriptions of the Oceanic Oxygen Status
Brewer, P.G., and A.F. Hofmann. 2014. A plea for temperature in descriptions of the oceanic oxygen status. Oceanography 27(1):160–167, https://doi.org/10.5670/oceanog.2014.19.

Oxygen Concentrations and Biological Fluxes in the Open Ocean
Emerson, S.R., and S. Bushinsky. 2014. Oxygen concentrations and biological fluxes in the open ocean. Oceanography 27(1):168–171, https://doi.org/10.5670/oceanog.2014.20.

Eutrophication-Driven Deoxygenation in the Coastal Ocean
Rabalais, N.N., W.-J. Cai, J. Carstensen, D.J. Conley, B. Fry, X. Hu, Z. Quiñones-Rivera, R. Rosenberg, C.P. Slomp, R.E. Turner, M. Voss, B. Wissel, and J. Zhang. 2014. Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 27(1):172–183, https://doi.org/10.5670/oceanog.2014.21.

(Nearly) A Decade of Directly Measured Sediment N2 Fluxes: What Can Narragansett Bay Tell Us About the Global Ocean Nitrogen Budget?
Fulweiler, R.W., and E.M. Heiss. 2014. (Nearly) a decade of directly measured sediment N2 fluxes: What can Narragansett Bay tell us about the global ocean nitrogen budget? Oceanography 27(1):184–195, https://doi.org/10.5670/oceanog.2014.22.

Persistent Organic Pollutants (POPs), Polycyclic Aromatic Hydrocarbons (PAHs), and Plastics: Examples of the Status, Trend, and Cycling of Organic Chemicals of Environmental Concern in the Ocean
Farrington, J.W., and H. Takada. 2014. Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: Examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean. Oceanography 27(1):196–213, https://doi.org/10.5670/oceanog.2014.23.

Organic Chemicals of Environmental Concern: Water Sampling and Analytical Challenges
Farrington, J.W. 2014. Organic chemicals of environmental concern: Water sampling and analytical challenges. Oceanography 27(1):214–216, https://doi.org/10.5670/oceanog.2014.24.

A Review of Observations of Floating Tar in the Sargasso Sea
Peters, A.J., and A.N.S. Siuda. 2014. A review of observations of floating tar in the Sargasso Sea. Oceanography 27(1):217–221, https://doi.org/10.5670/oceanog.2014.25.

REGULAR ISSUE FEATURES

Sixty Years of Sverdrup: A Retrospective of Progress in the Study of Phytoplankton Blooms
Fischer, A.D., E.A. Moberg, H. Alexander, E.F. Brownlee, K.R. Hunter-Cevera, K.J. Pitz, S.Z. Rosengard, and H.M. Sosik. 2014. Sixty years of Sverdrup: A retrospective of progress in the study of phytoplankton blooms. Oceanography 27(1):222–235, https://doi.org/10.5670/oceanog.2014.26.

DEPARTMENTS

FROM THE PRESIDENT • Preparing Our Graduate Students for a New World
Abbott, M.R. 2014. From the President—Preparing our graduate students for a new world. Oceanography 27(1):7, https://doi.org/10.5670/oceanog.2014.28.

BOOK REVIEW • An Introduction to the Chemistry of the Sea, Second Edition
Aguilar-Islas, A. 2014. Review of An Introduction to the Chemistry of the Sea, Second Edition, by M.E.Q. Pilson. Oceanography 27(1):247–248, https://doi.org/10.5670/oceanog.2014.31.

RIPPLE MARKS • Glass Palaces at the Bottom of the Sea
Dybas, C.L. 2014. Ripple marks—The story behind the story. Oceanography 27(1):8–11, https://doi.org/10.5670/oceanog.2014.29.

THE OCEANOGRAPHY CLASSROOM • Why Teach What When?
Garrison, T. 2014. The oceanography classroom: Why teach what when? Oceanography 27(1):236–237, https://doi.org/10.5670/oceanog.2014.30.

HANDS-ON OCEANOGRAPHY • Ocean Acidification: The Role of CO2
Murphy, J.L., and C.I. Measures. 2014. Ocean acidification: The role of CO2. Oceanography 27(1):238–246, https://doi.org/10.5670/oceanog.2014.01.

CAREER PROFILES • Options and Insights
Career profiles—Options and insights. 2014. Oceanography 27(1):249–250.

QUARTERDECK • What We Should Know in Relation to What We Do Know
Rice, D.L. 2014. What we should know in relation to what we do know. Oceanography 27(1):5, https://doi.org/10.5670/oceanog.2014.27.

Special Issue Guest Editors

John W. Farrington, Woods Hole Oceanographic Institution
Flip Froelich, Froelich Education Service

Sponsors

Production of this issue of Oceanography was supported by the US National Science Foundation.