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Boiler Bay study site showing the low intertidal 
macrophyte zone (foreground) and the mid intertidal 
mussel zone (upper right). The patchy nature of the 
macrophyte zone is evident, with kelp (brown algae 
in foreground), surfgrass (green and yellow patches), 
and red algae (upper left) patches intermingled. 
Photo credit: Heather Fulton-Bennett
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INTRODUCTION
Relative to their area, coastal ecosystems 
contribute disproportionately to global 
marine productivity (Field et  al., 1998), 
with upwelling ecosystems account-
ing for the majority of that productiv-
ity (Chavez and Messié, 2009). Among 
the four major upwelling ecosystems, 
the California Current Large Marine 
Ecosystem (CCLME) is probably the 
most intensively studied (Checkley and 
Barth, 2009). However, knowledge of the 
patterns and dynamics of that portion of 
the CCLME closest to humans (i.e.,  the 
inner shelf ecosystem, defined as water 
depths generally less than 50 m) was 
limited and based mostly on local-scale, 
uncoordinated academic research. Here, 
we summarize the historical develop-
ment of conceptual and methodological 
advances that spurred the 1999 creation 
of the Partnership for Interdisciplinary 
Studies of Coastal Oceans (PISCO), 
and then provide highlights of PISCO-

driven advances in understanding the 
dynamics of the CCLME meta-ecosystem 
(meta-ecosystems are collectives of local 
ecosystems connected by flows of materi-
als and energy; Loreau et al., 2003). 

THE EVOLUTION OF 
EXPERIMENTAL ECOLOGY
In the mid-twentieth century, marine 
ecologists triggered an ecological rev-
olution by demonstrating the power of 
manipulative field experiments to deter-
mine cause and effect (Connell, 1961; 
Paine, 1966). Previously, most research-
ers relied primarily on observations to 
explain community pattern and dynamics 
(Lubchenco and Real, 1991). By removing 
or excluding predators or competitors in 
controlled field experiments, Connell and 
Paine showed that species interactions 
influenced the distribution, abundance, 
and diversity of populations and com-
munities. Although ecology remained 
dominated by observational approaches 

into the 1970s, by the 1980s, ecologi-
cal research was increasingly experiment 
based, and species interactions com-
monly were identified as major deter-
minants of ecological pattern. However, 
flaws in experimental approaches also 
were noted (Diamond, 1986; Inchausti, 
1994; see review in Werner, 1998). For 
logistical reasons, most experiments were 
small scale (e.g., hundreds of square cen-
timeters to a few square meters in area) 
and short term (e.g., days to a few years), 
thus limiting insights into the influence 
of larger-scale phenomena and limit-
ing detection of time lags, natural tem-
poral cycles, and population dynam-
ics (Brown and Heske, 1990). Also, with 
exceptions (e.g.,  Dayton, 1971; Menge, 
1976; Lubchenco and Menge, 1978), most 
experimental studies—whether marine, 
freshwater, or terrestrial—were done at 
single or a few sites, limiting their spatial 
generality. Because environmental gradi-
ents are universal in ecological systems 
(e.g., Whittaker, 1970), and marine studies 
indicated that interaction strength varied 
along such gradients (e.g., Dayton, 1971; 
Menge and Sutherland, 1976), incorpora-
tion of spatial variability into experimen-
tal designs was an important next step.

THE INFLUENCE OF OCEAN 
DYNAMICS ON NEARSHORE 
ECOLOGICAL PATTERNS
Until ~1980, oceanic influences on eco-
logical patterns in coastal marine ecosys-
tems were underappreciated (e.g., Dayton 
and Tegner, 1984; Menge, 1992). Variable 
wave exposure as an important determi-
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nant of community structure and dynam-
ics was the primary oceanic influence 
investigated (e.g.,  Lewis, 1964; Dayton, 
1971; Menge, 1976), a focus that persists 
today (e.g., Bustamante and Branch, 1996; 
Taylor and Schiel, 2010; Bryson et  al., 
2014). However, with exceptions (Odum, 
1980; Duggins et al., 1989, Witman et al., 
1993), researchers largely neglected 
potential variation in the ocean’s role in 
delivering propagules, nutrients, and 
particulates (i.e.,  “ecological subsidies”; 
hereafter subsidy[ies]), thus implicitly 
assuming these inputs were relatively 
homogeneous. The 1980s saw a para-
digm shift when researchers began inves-
tigating recruitment effects on inter-
tidal communities (Underwood and 
Denley, 1984; Gaines and Roughgarden, 
1985), and including recruitment in 
models of community dynamics (Menge 
and Sutherland, 1987). These advances 
inspired a 1987 US National Science 
Foundation-funded workshop (Eckman 
et al., 1989) that proposed two new direc-
tions in marine research: (1) expansion of 
spatial and temporal scales, and (2) inclu-
sion of ocean-driven subsidies.

Research in the 1990s demonstrated the 
influence of subsidies on community and 
population structures (e.g., Menge, 1992; 
Bustamante et al., 1995; Polis and Hurd, 
1996; Dayton et  al., 1999). For example, 
filter-feeding basal species growth var-
ied with inputs of phytoplankton (Menge, 
1992) and kelp detritus, algal productivity 
varied with upwelling (Bustamante et al., 
1995), and terrestrial food web dynam-
ics varied with marine-derived carcasses 
and wrack among different-sized islands 
(Polis and Hurd, 1996). 

LOOKING TOWARD A “GRAND 
UNIFIED THEORY OF ECOLOGY”
Ecology is theory-rich, but because eco-
logical systems involve interactions 
among living, evolving, variable, diverse 
biota and many equally variable environ-
mental factors, understanding ecosystem 
dynamics remains a work in progress. In 
fact, the likelihood of achieving a “grand 
unified theory of ecology” remains con-

troversial (e.g., Lawton, 1999; Simberloff, 
2004; Ricklefs, 2008; Brooker et al., 2009).

Nonetheless, community theory has 
advanced. Highlights include establish-
ing “top-down” (Hairston et  al., 1960) 
and “trophic cascades” concepts (Paine, 
1980; Carpenter et al., 1985), where pred-
ators indirectly determine plant commu-
nity structure by controlling herbivore 
abundance. Years of research showed 
strong top-down dynamics in natural 
systems (e.g., Terborgh and Estes, 2010). 
Yet, studies also revealed how bottom-up 
control, via spatial variation in subsi-
dies, could underlie variation in trophic 
structure (i.e.,  number of trophic levels; 
Oksanen et  al., 1981; Fretwell, 1987) or 
affect the importance of predation (Power 
et al., 1996; Borer et al., 2005). Top-down 
influences often counter negative effects 
of competition, which is nontrophic, with 
important consequences for community 
structure (e.g., Paine 1966). Alternatively, 
nontrophic facilitative (positive) inter-
actions can be important, particularly in 
moderating effects of stress (Bertness and 
Hacker, 1994; He et  al., 2013). Positive 
interactions may rival top-down effects in 
influencing species abundance and rich-
ness, at least among foundation species 
(Thomsen et al., 2018). 

Plant ecologists were among the first 
to document that communities varied 
in structure along environmental gradi-
ents (Whittaker, 1970). Building on the 
top-down/bottom-up perspective, ecol-
ogists identified environmental stress 
as a determinant of variation in species 
interactions and of their role in structur-
ing communities (Connell, 1975; Menge 
and Sutherland, 1976; Grime, 1977). The 
identification of propagule input rates 
as drivers of species abundances led to 
the incorporation of recruitment den-
sity gradients—​along which competi-
tion could be strong (high recruitment) 
or weak (low recruitment)—into the 
expanding conceptual model framework 
(Menge and Sutherland, 1987). The later 
incorporation of facilitation yielded the 
present “environmental stress model” 
framework (Bruno et  al., 2003; Silliman 

and He, 2018). In synthesizing these 
ideas, it became clear that conducting 
field experiments and observations across 
large spatial and long temporal scales 
would be necessary in order to approach 
a “grand unified theory of ecology.”

PISCO: PURPOSE AND VISION
A main focus of PISCO was on the bio-
geography of ecological processes. Our 
overarching question was: How do 
major elements of the CCLME function 
to produce patterns of species distribu-
tion, abundance, and diversity? Because 
determination of climate change impacts 
requires lengthy data sets, we planned 
for PISCO to last decades. Because the 
ocean varies across scales of tens to thou-
sands of kilometers, we envisioned con-
ducting identically designed and exe-
cuted studies at multiple sites along the 
North American west coast. Finally, 
because multiple biotic and abiotic pro-
cesses interact to determine ecological 
patterns, we aimed to quantify patterns, 
evaluate the processes driving those pat-
terns, and investigate the factors under-
pinning species’ responses to environ-
mental processes. 

Coastal Ocean Context: 
A “Black Box”
Understanding the role of inner-shelf 
ocean processes in shaping nearshore 
ecosystems was and remains a key 
PISCO goal. Although earlier technology 
demonstrated variable oceanic condi-
tions, satellite images of sea surface tem-
perature (SST) revealed unexpected tex-
ture at multiple scales (Figure 1). Further, 
features such as upwelling centers 
appeared to be anchored to coastal fea-
tures such as headlands, bottom topogra-
phy, and coastal angle. SST maps revealed 
local-to-regional upwelling variation that 
guided the design of the PISCO study site 
array (see Figure 1 in Menge et al., 2019, 
in this issue).

Despite these insights, however, sat-
ellite imagery could not resolve “inner-
shelf ” oceanic features. Moreover, shallow 
inner-shelf depths precluded sampling by 
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large oceanographic vessels. Because the 
inner shelf was an oceanographic and 
ecologically data-poor “black box,” estab-
lishment of instrumented inner-shelf 
mooring networks in Oregon and central 
and southern California was a top prior-
ity (Cudaback et al., 2005; Kirincich et al., 
2005). In addition to temperature, salin-
ity, and current sensors, moored instru-
mentation included chlorophyll-a sen-
sors, and, later, oxygen and pH sensors 
(see Chan et al., 2019, in this issue). These 
arrays helped provide the first compre-
hensive look at inner-shelf coastal ocean-
ography along the CCLME.

To capture interactions between the 
inner shelf ocean, intertidal, and subtidal 
benthic ecosystems, we used a nested 
research design. Local-scale rocky-reefs 
or nearby kelp beds, termed “sites” (with 
scales of tens to hundreds of meters), 
were basic spatial units. Successively 
larger scales were replicate sites of sim-
ilar biological structure nested within 
coastal sectors, or “capes” (kilometers to 
tens of kilometers), replicate capes nested 
within “subregions” (tens to hundreds of 
kilometers; i.e., with similar oceanic con-
ditions), and subregions nested within 
“regions” (scales of hundreds to thou-
sands of kilometers).

 
Ecological Subsidies
Understanding the ocean’s role in struc-
turing coastal ecosystems required quan-
tification of subsidies connecting inner 
shelf-kelp bed-intertidal communities. 
Based on prior methods (e.g., Farrell et al., 
1991; Menge, 1992) and pre-PISCO data 
sets (Connolly et al., 2001) together with 
new method development (Ammann, 
2004; White et al., 2019, in this issue), we 
established a coast-wide program of fre-
quent sampling (biweekly to monthly). 

MAJOR ADVANCES
Although PISCO research over the past 
20 years focused on the CCLME and 
advanced understanding of its dynam-
ics, our studies contributed more gener-
ally by providing (1) conceptual advances 
relevant to other LMEs, and (2) broader 

ecological conceptual advances applica-
ble to marine and nonmarine ecosystems 
alike. The following examples illustrate 
these advances.

Widespread Application of 
Nested Designs
A key PISCO advance was application of 
the comparative-experimental approach 
(CEA) across large spatial scales 
(i.e., using geographically nested designs 

to understand large-scale dynamics at the 
meta-ecosystem scale). Understanding 
meta-ecosystems based on observations 
is challenging because conducting pro-
cess studies, particularly manipulations, 
is largely unfeasible at the large spa-
tial scales spanned by meta-ecosystems. 
Further, site-scale removals or addi-
tions of species are logistically challeng-
ing and ethically questionable. The CEA 
offers a feasible alternative. As pioneered 

FIGURE 1. Sea surface temperature along the California Current System.

130°W
30°N

35°N

5

10

15

20

25

Te
m

pe
ra

tu
re

 (°
C)

40°N

45°N

50°N

122°W

San Francisco

Pt. Arena

Cape Mendocino

Cape Blanco

Newport

Columbia River

Strait of Juan de Fuca

AVHRR Composite
August 12–16, 2000

Point Conception

San
Diego

126°W 118°W



Oceanography |  Vol.32, No.342

by Dayton (1971), the CEA combines 
identically designed, executed, and rep-
licated small-scale manipulations at mul-
tiple sites along environmental gradients 
typical of oceanic variability (e.g., distur-
bance, upwelling, temperature, salinity, 
pH, currents). Besides Dayton’s (1971) 
seminal work, CEA studies have been 
done in New England (Menge, 1976; 
Lubchenco and Menge, 1978; Bryson 
et  al., 2014), Europe (Coleman et  al., 
2006), South Africa (Bustamante et  al., 
1995), Chile (Navarrete et  al., 2005), 
New Zealand (Menge et  al., 2003), the 
Galápagos (Witman et  al., 2010), and 
Oregon (Menge et al., 1997). 

Consumer pressure (consumptive 
and nonconsumptive predation, herbiv-
ory) can be a powerful structuring force 
(e.g.,  Shurin et  al., 2002; Terborgh and 
Estes, 2010; Kimbro et  al., 2017) but is 

not universally strong (Menge, 1976; 
Lubchenco and Menge, 1978; Arnott 
and Vanni, 1993; Freestone et  al., 2011; 
Bryson et al. 2014; Kimbro et al., 2017). 
As summarized earlier, understanding 
variation in ecological processes requires 
investigations along environmental gra-
dients. One such gradient, subsidies, 
can be an important factor driving tro-
phic structure, and thus consumer pres-
sure (Menge and Sutherland, 1976, 1987; 
Fretwell, 1987; Oksanen et  al., 1981; 
Carpenter et al., 1985; Menge et al., 1997; 
Kimbro et al., 2019). 

Models predicted that upwelling vari-
ability would drive recruitment inputs 
that would underlie variation in top-
down effects (Roughgarden et  al., 1988; 
Connolly and Roughgarden, 1999). This 
scenario (the “recruit-adult” model) 
assumed passive transport of larvae and 

phytoplankton driven offshore during 
upwelling and onshore during down-
welling. PISCO studies were consistent 
with the latter predictions (Figure 2), 
but the top-down response remained 
untested. To gain insight into top-down 
and bottom-up variability, we asked: 
How does consumer pressure vary in 
relation to subsidies across large spa-
tial scales? Using simple methods, we 
quantified variation in sea star predation 
rate (Pisaster ochraceus) on mussel prey 
(Mytilus californianus) along a coastal 
gradient of oceanic conditions and sub-
sidies (Menge et  al., 2004). Regressions 
showed that mussel recruitment 
(Figure 2a; adj. R2 = 0.678) and phyto-
plankton abundance (adj. R2 = 0.315) 
both varied inversely with upwelling. 
However, our experiments did not sup-
port the recruit-adult model. Predation 

FIGURE 2. Monthly larval recruitment rate time series from January 1997 to December 2004 for (a) Balanus glandula, and (b) Mytilus spp. at the 31 study 
sites, arranged from north to south. Larval recruitment rates in central Oregon (Fogarty Creek to Strawberry Hill) are more than five orders of magni-
tude greater than in central California (Hopkins to Piedras), but increase again toward Point Conception (Jalama). Note the clear annual cycles across 
the region, the marked decline in recruitment south of Cape Arago, and the near-absence of recruits south of Monterey Bay (Hopkins). Recruitment rate 
was the number of recruits per day per larval collector, transformed prior to analyses. Black indicates zero recruitment, and white indicates no data. 
From Broitman et al. (2008)
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rates were unrelated to subsidies (phyto-
plankton p = 0.39, mussel recruitment 
p = 0.3), instead increasing with sea star 
density (adj. R2 = 0.46). In categorical 
analyses, however, predation rate was at 
least three times greater when a site had 
high recruitment and high phytoplank-
ton (Menge et  al., 2004). We concluded 
that in the CCLME, predation rate was 
multifactorial, driven by ecological subsi-
dies (especially in the north) and factors 
underlying the abundance of P. ochraceus 
(e.g.,  alternative prey, sea star recruit-
ment, and sea star longevity). 

Latitudinal Subsidy Gradients
Geographic subsidy quantification 
revealed dramatic nonlinear barnacle and 
mussel recruitment gradients. Mussel and 
Balanus glandula (barnacle) recruitment 
was high in central Oregon, dropped 
abruptly at Cape Arago, decreased fur-
ther between Monterey Bay and Point 
Conception, and increased slightly south-
ward of Point Conception (Broitman 
et al., 2008; Figure 2). 

Phytoplankton (proxied by chloro-
phyll-a) varied similarly, with higher lev-
els northward than southward (Barth 
et  al., 2007; Hickey and Banas, 2008). 
Phytoplankton abundance and recruit-
ment were strongly associated with con-
tinental shelf width (Hickey and Banas, 
2008; Menge et  al., 2015). Wide shelves 
have higher retention and more sluggish 
currents (Kirincich et  al., 2005; Hickey 
and Banas, 2008), suggesting an import-
ant effect of flow-topography interactions 
on subsidies (Menge et al., 2015). In con-
trast to phytoplankton, nutrients (NO3– 
and NO2–) varied primarily through time 
in concert with upwelling events but only 
weakly with latitude (Barth et  al., 2007; 
Hickey and Banas, 2008). 

Mechanisms Linking Local, 
Regional, and Coast-Wide 
Ecosystems
Are inner-shelf processes causally linked 
to community dynamics? As noted 
above, the recruit-adult model hypothe-
sized that variable cross-shelf upwelling 

currents determined geographic differ-
ences in recruitment rates, thereby alter-
ing community structure (Roughgarden 
et  al. 1988; Connolly and Roughgarden, 
1999; Botsford et  al., 2006). The model 
predicted low recruitment with persistent 
upwelling (because of continual offshore 
larval transport) or persistent down-
welling (because of low larval survival 
due to limited food availability).

Do upwelling regimes really under-
lie patterns of recruitment? The data in 
Figure 2 are consistent with this idea, as 
are literature examples (e.g., Menge et al., 
2003; Caselle et al., 2010; Lathlean et al., 
2019). However, research revealed that 
larvae are not passive particles. Rather, 
using vertical migration, some larval spe-
cies can move vertically into water layers 
that keep them within a few kilometers of 
the shore (Morgan et al., 2009), indicat-

ing that recruitment dynamics are more 
complex than simple demographic link-
ages would suggest.

An alternative model, the “surf-zone 
hydrodynamics” hypothesis, suggests that 
upwelling currents do not affect onshore 
recruitment (e.g.,  Shanks et  al., 2017). 
Instead, this hypothesis argues that the 
surf zone imposes a semi-permeable bar-
rier (e.g.,  Rilov et  al., 2008) that modu-
lates successful larval transport from 
ocean to shore (e.g., Morgan et al., 2016; 
Shanks et  al., 2017). That is, successful 
recruitment depends on onshore move-
ment of water by wave action, internal 
waves (e.g.,  Pineda, 1999), tidal change, 

and shore topography. Waves cross broad 
“dissipative” beaches relatively slowly, 
depositing larvae as they go, whereas 
waves crossing steep “reflective” beaches 
rebound seaward, preventing larval set-
tlement (terminology of McLachlan, 
1990). Shanks et  al. (2017) suggested 
that this mechanism applies to barnacle 
recruitment on rocky shores. However, 
independent analyses found no rela-
tionship between barnacle (or mussel) 
recruitment and surf zone width (Menge 
and Menge, 2019). 

The larval vertical migration hypoth-
esis (Morgan et  al., 2016) suggests that 
this mechanism keeps larvae within a few 
kilometers of shore. Thus, because larvae 
still must travel several kilometers shore-
ward to reach the surf zone and intertidal, 
cross-shelf transport seems required. This 
suggestion was borne out by three stud-

ies. In South Africa (Benguela Current 
System), shoreward larval transport 
depended on the upwelling regime. As 
larvae approached shore, wave action, 
tidal change, and sea breezes explained 
additional variance in barnacle and mus-
sel settlement (Pfaff et  al., 2015). In the 
CCLME, barnacle, mussel, and fish 
recruitment depended on the proximity 
of ocean fronts to the shore (Woodson 
et al., 2012). In southern California, fish 
recruitment depended on both large-scale 
and small-scale ocean factors (Caselle 
et al., 2010). Large-scale factors were lar-
val production and early survival, which 
are dependent on basin- and regional-​

 “Ecology is theory-rich, but because ecological 
systems involve interactions among living, evolving, 

variable, diverse biota and many equally variable 
environmental factors, understanding ecosystem 

dynamics remains a work in progress.

”
. 
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We tested these ideas in the north-
ern CCLME (Bodega Marine Lab to 
north-central Oregon; Menge et  al., 
2015). We quantified intertidal commu-
nity structure and subsidies and related 
these to oceanic and environmental mea-
surements. Of the community variance 
explained by spatial and temporal fac-
tors, approximately 52% of was explained 
by large-scale spatial variation, 27% was 
explained by local-scale variation, and 
18% was explained by time (Figure 4). 
At the northern CCLME-scale, upwelling 
intensity, nutrients, and canopy cover var-
ied negatively, and phytoplankton, recruit-
ment, and sessile invertebrate abun-
dance varied positively with shelf width 
(Figure 5). Nutrient levels and inverte-

FIGURE 3. Conceptual model of benthic-pelagic coupling. Codes for symbols and arrows are shown at top of diagram. Boxes represent offshore 
environments (i.e., ±5 km from shore) where larvae reside during development, nearshore environments (500–1,000 m from shore) where oceanic/​
behavioral processes stage them for transport through the surf zone (i.e.,  the space between nearshore and onshore), and onshore environments 
where settlement, recruitment, and growth to adulthood occur. Predictions that were supported by Menge and Menge (2013) data are marked with pur-
ple dots. Mechanisms supported by Shanks et al. (2017) and Shanks and Morgan (2018) for sandy shores and sandy shores with embedded rocks are 
marked with a yellow dot. Controversial mechanisms (see Menge and Menge, 2019) are marked with red boxes. Modified from Menge and Menge (2019)
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knowledge to other geographic regions. 
For example, recent syntheses test 
meta-ecosystem theory and thereby pro-
vide evidence-based frameworks for inte-
grated understanding of coastal ecosys-
tem patterns and dynamics (Menge and 
Menge, 2013; Menge et al., 2015; Hacker 
et al., 2019). A major challenge of spatial 
ecology is understanding the dependence 
of community structure on local- versus 
larger-scale processes. For benthic com-
munities, alternative hypotheses include 
local structure (1) is determined entirely 
by oceanic processes, (2) varies jointly 
with oceanic processes and local-scale 
processes, or (3) is idiosyncratic, with 
little influence from oceanic processes 
(Figure 1 in Menge et al., 2015). 

scale processes, while small-scale factors 
were local-scale processes affecting larval 
delivery to nearshore habitat. Thus, suc-
cessful recruitment depends on a com-
plex series of ocean and biotic processes 
(e.g.,  Pineda, 2000). A recent synthe-
sis suggests how these subsidy delivery 
mechanisms link together to replenish 
benthic populations and highlights areas 
where further understanding is needed 
(Figure 3; Menge and Menge, 2019). 

Spatial Marine Ecology: Integration 
of Oceanic and Benthic Linkages 
into a Meta-Ecosystem Framework
PISCO is strongly place-based and 
focused on gaining a spatial perspec-
tive. We also aim to generate and transfer 
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FIGURE 4. Percentage of variance in community structure explained by 
environmental factors, ecological subsidies, space, and time, analyzed by 
PERMANOVA and arranged by scale. From Menge et al. (2015)
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ment decreased with upwelling. Sessile 
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ing phytoplankton, while invertebrate-​ 
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perature was independent of any of the 
potential driving factors, and negatively 
associated with herbivore abundance, 
while herbivore abundance had only a 
weak positive association with nutri-
ents. Similar proportions of variability 
explained ecosystem dynamics (Hacker 
et al., 2019). That is, of total community 
variance explained by CEA-based exper-
iments, large-scale processes explained 
40%–49% while local-scale interactions 
explained 19%–39%.

In the southern CCLME, the cooler, 
equatorward-flowing California Current 
meets the warmer, northwestward-​
flowing Southern California Counter 
Current at Point Conception. Spatial pat-
terns in intertidal and kelp forest com-
munity similarity correspond strongly 
with the thermal structure of this region, 
creating distinct “bioregions” (Blanchette 
et al., 2008; Claisse et al., 2018). However, 
local environmental variables such as 

temperature also correspond with pat-
terns of ocean-mediated dispersal because 
both are strongly influenced by currents. 
Sorting the relative importance of local 
thermal environments from regional dis-
persal patterns for community structure 
is challenging. To separate these effects, 
we partitioned the statistical contribu-
tion of ocean-mediated dispersal from 
that of local thermal structure on spa-

tial community similarity (Watson et al., 
2011). Using ocean circulation model-
ing, we created a novel set of metrics—​ 
oceanographic “distance” (average disper-
sal time between sites) and “asymmetry” 
(difference between outgoing and incom-
ing dispersal times at a site). These region-
scale metrics corresponded more closely 
with intertidal and subtidal commu-
nity similarity than did local-scale ther-
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FIGURE 5. Path analysis showing the hierarchical flow of effects from larger to more local scales (indicated by shading from shelf width (lavender), to 
upwelling (light green), to ecological subsidies (light blue), to components of local community structure (light yellow). Numbers by arrows are standard-
ized path coefficients, which represent the predicted response in units of standard deviations. Coefficients significant at p < 0.1 are in parentheses; other 
coefficients are significant at p < 0.05. R2 values represent the amount of variation in response variables explained by all independent variables pointing 
to them. Surprises were a lack of links from upwelling or shelf width to water temperature, and N+N to algal turf and canopy. From Menge et al. (2015) 
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mal structure of the domain, suggesting 
that ocean-mediated dispersal exerted 
the dominant effect on spatial patterns of 
nearshore community similarity.

Geographic-Scale Ecology: The 
Intermittent Upwelling Hypothesis
Expanding the CEA to an inter-​
hemispheric scale, Menge and Menge 
(2013) proposed that upwelling regimes 
are a major global determinant of inter-
tidal community structure. They hypoth-
esized that variation in structure was 
driven by the relative frequency of alter-
nation between upwelling and relaxation/​
downwelling. The proposed mechanism 
is that upwelling supports high produc-
tivity in surface waters, while periodic 
relaxations in upwelling halt cross-shelf 
transport, keeping productive waters 

and planktonic propagules over the 
inner shelf. This “intermittent upwell-
ing hypothesis” (IUH) suggests that rates 
of ecological processes (predation, com-
petition, subsidies, growth) are high 
with intermittent upwelling (i.e.,  when 
switches between upwelling and 
relaxation/​​downwelling occur relatively 
frequently, roughly weekly to biweekly). 
In turn, all rates are predicted to be low 
with either persistent upwelling or per-
sistent downwelling, that is, they occur 
roughly continuously, with only brief 
switches to the opposite condition. 

Menge and Menge (2013) combined 
PISCO CEA results with their parallel 
research done in New Zealand to test this 
hypothesis. Factors investigated included 
phytoplankton abundance (closely cor-
related with phytoplankton productivity; 

Menge, 2000) and rates of recruitment, 
mussel growth, barnacle colonization, 
predation, and competition. In all cases, 
the relationship between process rates 
and upwelling regime were unimodal as 
predicted (Menge and Menge, 2013), and 
subsidies were strongly correlated with 
community dynamics (Figure 6). 

Importantly, complete tests of the 
IUH require quantification of the full 
range of upwelling regimes, from per-
sistently downwelled through intermit-
tently upwelled to persistently upwelled 
regions. However, more geographically 
limited partial tests are also possible. For 
example, Lathlean et al. (2019) tested the 
persistent-downwelling to intermittent-​
upwelling half of the IUH. They quan-
tified barnacle recruitment in intermit-
tently upwelled (southeastern South 
Africa) and persistently downwelled 
(southeastern Australia) regions. As pre-
dicted, barnacle recruitment was higher 
in intermittently upwelled locations. A 
potentially similar result was obtained in 
a study in the Galápagos (Witman et al., 
2010), where predation and ecologi-
cal subsidies increased with increasing 
upwelling, with no sign of unimodality. 
However, it was unclear if the upwell-
ing regime in this study spanned the full 
upwelling regime assumed by the IUH. 

CONCLUSIONS
In its first 20 years, PISCO has been a 
leader in scale-sensitive research that has 
yielded unprecedented insight into inner-
shelf influences on pattern and process in 
shallow benthic communities. Advances 
were made across local to large spatial 
scales that clarified the meta-ecosystem 
dynamics of the CCLME, knowledge that 
suggests testable hypotheses applicable 
to other coastal LMEs and to nonmarine 
meta-ecosystems. The research sharp-
ened understanding of key ecological 
concepts such as top-down/bottom-up 
impacts, the role of ecological subsidies, 
and how these are driven along environ-
mental gradients. We pioneered wide-
spread application of the CEA, thereby 
enabling insights into geographic patterns 

FIGURE 6. Correlations between the natural logarithm of chlorophyll-a and (a) barnacle colonization 
rate, (b) effect of predation on prey colonization rate, (c) space competition rate (barnacles vs mus-
sels), (d) predation rate (sea stars on mussels), and (e) effect of predation on final prey abundance 
in exclusion experiments. Symbols are for Oregon (blue), California (green), and New Zealand (red) 
study sites. Adj. = adjusted. From Menge and Menge (2013)
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of meta-ecosystem dynamics and high-
lighting an approach that can be used in 
any system. Similar groups have focused 
on ecosystem dynamics in kelp beds 
(the Kelp Ecosystem Ecology Network, 
KEEN, http://www.kelpecosystems.org/) 
and seagrass communities (the Zostera 
Experimental Network, Zen, http://zen-
science.org/), and we urge expansion of 
this approach to other systems to pro-
vide society with crucial understanding 
of ecosystems globally. 
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Researchers conducting surveys and moni-
toring experiments at Cape Blanco, Oregon. 
Foreground seaweeds include brown kelps, 
red bladed and foliose algae, pink coralline 
algae, and green algae. Above the algae is 
a mostly bare rock zone and a mussel zone. 
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