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INTRODUCTION
Marine protected areas (MPAs) have 
become a prominent conservation and 
management tool in ocean environments 
around the world. Over the past several 
decades, the purposes, design, manage-
ment, and science of MPAs has evolved 
markedly. From the political science per-
spective, global efforts to establish MPAs 
can be classified into three explanatory 
policy network theories: the “epistemic 
community,” which represents a linear 
science-driven process; the “advocacy 
coalition,” in which scientists play a role 
that informs MPA design, along with 
other stakeholders; and the “discourse 
coalition,” in which scientific information 
may or may not play a role in structuring 
the discourse surrounding MPAs (Caveen 
et al., 2013). Of these policy network the-
ories, the first two provide the clearest 
path for science to inform MPA estab-
lishment and ample opportunities for 
feedback between policymakers and the 
scientific community. Here, we provide a 
chronology of how some MPA purposes 
(i.e.,  management applications), and the 
science that informed their design and 
evaluation, have evolved through the past 
three decades, and we mention some of 
the numerous cases of feedback between 
them. We draw from a number of reviews 
that characterize the state of MPA sci-
ence and policy (Lubchenco et al., 2003; 
Leslie, 2005; Halpern et  al., 2010a). 
For aspects of the design of MPA net-
works and for understanding the inter-
play between science and policy, we 
draw on our own experience with the 
Partnership for Interdisciplinary Studies 
of Coastal Oceans (PISCO) and work 

of our colleagues in developing the sci-
ence guidelines for California’s net-
work of MPAs (Saarman et  al., 2013; 
Botsford et al., 2014a). 

EVOLUTION OF THE 
MANAGEMENT APPLICATIONS 
OF MPAS 
A widely accepted definition of MPAs 
is “a clearly defined geographical space, 
recognized, dedicated, and managed…
to achieve the long-term conservation 
of nature with associated ecosystem ser-
vices and cultural values” (IUCN, 2018). 
However, this has not always been the 
stated purpose of MPAs, and the applica-
tions of MPAs have evolved through time.

One of the earliest records of MPAs is 
their use by indigenous Pacific peoples of 
Oceania to manage coastal fisheries for 
the local sustainability of a common pool 
resource (Johannes, 1978). Their pri-
mary purpose was to maintain local con-
trol and stewardship of fishing grounds, 
and they did not explicitly include the 
ecosystem- and habitat-based dimen-
sions of modern MPAs. Though these 
spatial tenure systems declined rapidly 
following contact with Western civiliza-
tions, their success is evidenced by their 
persistence to the 1980s in island nations 
(e.g., Palau, Micronesia; Johannes, 1978) 
as well as a more recent renaissance of tra-
ditional community-based management 
approaches (Friedlander et al., 2013). 

MPAs for Fisheries Management
In the early 1990s, following perceived 
failures in traditional management, 
so-called “fishery reserves” were advo-
cated by some fisheries scientists as a tool 

for enhancing the sustainability of fish-
eries (e.g.,  Dugan and Davis, 1993). The 
mechanisms by which MPAs can increase 
sustainability include: (1) controlling fish-
ing effort by restricting access to portions 
of a fished stock, (2) creating spatial buf-
fers against unsuccessful management, 
(3) reducing impacts to size and age struc-
ture, and (4) reducing bycatch. In time, 
additional potential roles of MPAs would 
emerge to (5) limit impacts of fisheries on 
genetic structure, diversity, and selection 
of life history traits, (6) limit destruction 
of essential fish habitat, and (7) supple-
ment stock assessments (Claudet, 2011; 
Baskett and Barnett, 2015). 

Protecting the natural age and size 
structure (3, above) had two objectives. 
First was protecting the disproportion-
ate contributions of larger female fish to 
larval production and replenishment of 
fished populations (Figure 1a). It was also 
recognized that a fuller size and age dis-
tribution of females broadened the ages 
at which fish spawn, reducing a popula-
tion’s sensitivity to environmental vari-
ability (Botsford et  al., 2014b). The sec-
ond objective was the movement of 
larger individuals from MPAs to adja-
cent fished areas, increasing the size of 
fish caught. This so-called “spillover” of 
larger fish was considered especially rel-
evant for the production of “trophy fish” 
highly valued in recreational fisheries 
(Roberts et al., 2001). 

MPAs for Ecosystem and 
Biodiversity Conservation 
As the consequences of MPAs for 
ecosystem-​wide conservation became 
more apparent and recognition of the 
ecosystem impacts of fisheries increased, 
MPAs grew in popularity as an espe-
cially effective approach to ecosystem 
and biodiversity conservation. There was 
increasing focus on their involvement 
in (1) maintaining the functional role of 
harvested species in the ecosystems they 
inhabit, (2) preventing impacts of fish-
ing on geomorphological and biogenic 
habitats, and more broadly, (3)  pro-
tecting the structure and functioning 
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of intact ecosystems, including the bio-
diversity they support. With greater 
emphasis on ecosystem conservation, 
regulations extended beyond fishing to 
prohibiting other anthropogenic impacts 
(e.g.,  coastal discharges, aquaculture, 
mining, energy production structures). 
Thus, MPAs have become important ele-
ments of coastal and marine spatial plan-
ning (Halpern et al., 2010a). 

MPA Networks for 
Integrated Conservation and 
Fisheries Management
The chronology described above shows a 
dichotomy in the management applica-
tions of MPAs between fisheries manage-
ment and ecosystem-based conservation. 
While the inextricable linkage between 
these two goals has long been recognized, 
the necessity to conceptualize and lever-

age this linkage has become a current 
focus of MPA policy and science. As net-
works of MPAs became established, the 
connections between populations and 
ecosystems inside and outside of MPAs 
directed attention toward network-wide, 
regional management integrated across 
MPA boundaries, including fisheries 
and coastal management actions (Gaines 
et  al., 2010). Indeed, in some settings, a 
well-designed MPA network is critical to 
an optimal harvest strategy (Rassweiler 
et al., 2012). Yet, the ecosystem percent-
ages being set aside in MPA networks 
(typically less than 15%–20% of an eco-
system) emphasize the vulnerability of 
those networks to mismanaged fisheries 
outside their boundaries. Additionally, 
few fisheries management plans and 
stock assessments accurately account for 
the status of populations within MPAs 
(Field et al., 2006).

EVOLUTION OF THE SCIENCE 
OF MPAS
The science of MPAs has both influ-
enced the policy application of MPAs 
and evolved in response to policy needs 
as MPAs are applied to new management 
goals. This science includes conceptual 
and quantitative theory and empirical 
studies that inform the design of stand-
alone MPAs and MPA networks and eval-
uate the effectiveness of MPAs at achiev-
ing management and conservation goals. 

Science of MPAs for Fisheries 
Management
The early management emphasis of MPAs 
as tools to control fishing effort and mor-
tality motivated the development of 
quantitative models to evaluate the rela-
tive consequences of MPAs and more tra-
ditional management levers on fisher-
ies yields (Hastings and Botsford, 1999; 
White et al., 2010a). For the most part, 
those studies indicated that MPAs could 
improve fishery yields if a stock is being 
overharvested. However, if the conven-
tional fishery is well managed, there is a 
trade-off: increasing MPA area (and thus 
overall fish biomass) inevitably reduces 

b
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FIGURE 1. (a) Early depiction of the concept of larval “spillover” from a “fishery reserve” to fished 
populations in a coral reef ecosystem. After Bohnsack (1990) (b) Recent empirical evidence of lar-
val connectivity occurring simultaneously between marine protected areas (MPAs) and from MPAs 
to fished populations along with self-replenishment within an MPA in central California. After 
Baetscher et  al. (2019) Patterns of connectivity are based on genetic parentage analysis. Lines 
describe the direction of dispersal from the location of parental origin (filled circle) to recruitment of 
its offspring (triangle). 
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fishery yields, except under certain spe-
cific circumstances (Figure 2; White and 
Kendall, 2007). 

Initially, MPAs were designed as 
standalone areas to enhance the popula-
tions of one or a few species. This single- 
species focus generated design crite-
ria based on traits of individual spe-
cies, including their habitat require-
ments and movement ranges. The need 
for data to implement those design crite-
ria launched numerous studies that iden-
tified spawning aggregations and mapped 
critical habitats (e.g., Grüss et al., 2014). 
The emphasis on enhancing fisheries led 
to a design trade-off between increas-
ing MPA size to protect more individu-
als versus ensuring high rates of juvenile 
and adult spillover to benefit adjacent 
fisheries. One approach for addressing 
this trade-off was to develop a design cri-
terion based on the boundary-area ratio; 
greater boundary lengths relative to MPA 
area increase spillover. Habitat configu-
ration was also found to influence spill-
over, with MPAs that partially encom-
pass a reef producing more spillover than 
MPAs that encompass an isolated reef 
surrounded by sediment (Tupper, 2007). 
Simultaneously, empirical studies exam-
ined actual rates and distances of spill-
over (reviewed by Halpern et al., 2010b)

The other mechanism of fish-
ery enhancement—increasing larval 
production—has been more difficult to 
study. While fish clearly get larger inside 
MPAs (Lester et al., 2009) and would have 
commensurate increases in per capita 
fecundity (Barneche et al., 2018), quanti-
fying the export of larvae to fished pop-
ulations is hampered by the difficulty of 
tracking the movement of planktonic lar-
vae (White et al., 2019, in this issue). With 
the advent of powerful genetic parentage 
analysis, several studies have detected 
MPA self-replenishment, as well as dis-
persal from MPAs to fished populations 
and other nearby MPAs (Christie et  al., 
2010; Harrison et  al., 2012; Baetscher 
et  al., 2019; Figure 1b). However, the 
small number of individual dispersal 
events detected by these methods leaves 

much uncertainty about the magnitude 
of larval export and its effect on regional 
populations. For now, numerical ocean 
modeling approaches remain the best 
way to estimate this type of spillover 
(e.g., Watson et al., 2010). 

One management approach to improv-
ing yield included “periodic closures,” 
which were designed to temporarily 
relieve populations from fishing mor-
tality so they could regenerate and then 
be opened to fishing again (Game et al., 
2009). Rotational closure plans have been 
successful in boosting yields in some 
conventional fisheries (e.g.,  Hart, 2003), 
are common in tropical Pacific societ-
ies (Cohen and Foale, 2013), and may 
be possible in areas where social con-
straints make permanent closures unfea-
sible (Cinner, 2007). However, modeling 
and empirical studies (e.g.,  White et  al., 
2013b) indicate that the rate at which 
MPAs restore natural size and age struc-
ture is much slower than the rate at which 
they are depleted by fishing. Coupled 
with the slow recovery of habitats dam-
aged by fishing gear, there appears to be 

greater value in permanent closures in 
most cases (but see Goetze et al., 2018). 
In addition, a growing body of studies 
demonstrate that strict no-take marine 
reserves generate stronger population 
and community-level responses com-
pared to partial-take MPAs (e.g.,  Edgar 
et al., 2014). 

Ecosystem-Wide Consequences 
of MPAs and MPA Networks
Interest in using MPAs for ecosystem 
and biodiversity conservation has moti-
vated two types of science: empirical 
assessments of their conservation value, 
especially community-wide effects, and 
research aimed at informing design 
of MPAs for ecosystem and biodiver-
sity conservation (see reviews by Lester 
et  al., 2009; Carr et  al., 2018). Many of 
these studies document how protecting 
the abundance and functional roles of 
fished species can have cascading effects 
on community structures (e.g.,  Babcock 
et  al., 2010; Caselle et  al., 2018). For 
example, protection of urchin predators 
(fish and lobsters) inside a California 
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FIGURE 2. Typical results of a spatial population model showing the combined 
effects of MPA size, fraction of coastline in MPAs, and fishery harvest rate on 
equilibrium coast-wide fishery yield. This is a model of a generic fish species 
on a linear coastline, similar to that in Botsford et al. (2001). MPA width is rela-
tive to the average larval dispersal distance. The harvest rate in every location is 
either FMSY, which gives the maximum sustainable yield without MPAs (so yield 
declines as MPA area increases; red surface), or F0.1, which reduces biomass 
below a sustainable level without MPAs (so yield increases from 0 with either 
increasing MPA width or total area, but eventually declines as the whole coast is 
covered; blue surface).
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MPA led to higher density of native kelp 
and greater resistance to an invasive alga 
(Caselle et  al., 2018). The strength and 
time for such trophic cascades to mani-
fest and whether they contribute to eco-
system resilience are variable and can be 
suppressed by consequences of climate 
change (reviews by Carr et al., 2017, 2018; 
Bruno et al., 2019).

Another conclusion of this science 
is that for MPAs to conserve biodiver-
sity, they must represent the diversity 
of coastal marine ecosystems (Saarman 
et al., 2013). This type of ecosystem rep-
resentation is most efficiently achieved 
either with MPA networks or very large 
stand-alone MPAs. Moreover, most 
marine organisms exhibit long-distance 
larval dispersal and an “open” spatial 
population structure. This means that 
populations within most MPAs rely on 
replenishment by larvae produced else-
where, which prompted consideration of 
connected “networks” of MPAs (White 
et  al., 2010b). Additionally, establishing 
multiple MPAs could protect against cat-
astrophic loss from localized disasters 
(e.g., hurricanes, oil spills; Allison et al., 
2003). Thus, design criteria were needed 
that accounted for both MPA size and the 
relationship between larval dispersal dis-
tances and the spacing of adjacent MPAs 
(Gaines et al., 2003). A substantial contri-
bution to this work was generated by an 
NCEAS (National Center for Ecological 
Analysis and Synthesis) Working Group 
on Marine Reserves convened in 1999, 
which resulted in a special issue of 
Ecological Applications and several other 
articles (Lubchenco et  al., 2003). In the 
years since, there has been increasing 
focus on MPA networks as management 
tools for entire ecosystems (reviewed by 
Carr et  al., 2017). This trend has been 
aided by the development of spatial con-
servation tools that provide MPA design 
solutions to meet a variety of constraints, 
including types of ecosystems and total 
area set aside within MPAs; these tools 
include Marxan reserve planning soft-
ware (Ball and Possingham, 2001; Beger 
et  al., 2010) and interactive commu-

nity design platforms such as SeaSketch 
(https://www.seasketch.org). 

It was initially thought that explicit 
patterns of larval connectivity would 
be the key to designing MPA networks 
(e.g.,  Gaines et  al., 2003). However, 
because spatial patterns of disper-
sal and connectivity differ among spe-
cies, and tend to be relatively diffuse 
over large scales, except in cases with 
highly structured connectivity path-
ways (e.g. Costello et al., 2010), the focus 
has shifted to protecting representa-
tive habitats, assuming that appropri-
ate MPA spacing will ensure connectiv-
ity between adjacent MPAs (Moffitt et al., 
2011; Cabral et al., 2016). This leads to the 
question of how much habitat should be 
protected inside an MPA, the answer to 
which also varies among species (Moffitt 
et  al., 2011), though population models 
can provide some guidance (reviewed by 
White et al., 2011).

Science of MPA Networks for 
Integrated Conservation and 
Fisheries Management 
The current challenge for management 
and science is to develop integrated man-
agement plans for fisheries and MPAs as 
well as the scientific tools to inform them. 
Central to achieving this integration is 
the development of spatially explicit, cou-
pled population-connectivity models that 
incorporate spatial and temporal patterns 
of fishing effort, demographic responses 
to rates of mortality, and patterns of con-
nectivity and population replenishment 
based on actual habitat distribution (two 
examples are described in White et  al., 
2013a, and Hopf et al., 2016). Such mod-
els, informed by empirical estimates of 
fishing mortality, demography of pop-
ulations inside and outside MPAs, and 
oceanographic processes, can be used to 
evaluate the drivers of regional popula-
tion and ecosystem performance and pre-
dict their dynamics under future oceano-
graphic and management regimes. 

Another aspect of this integrated per-
spective of MPAs and fisheries manage-
ment that has not yet been fully explored 

is the application of MPA networks as 
tools to inform management. Several 
studies have pointed out how comparing 
populations inside and outside of MPAs 
can lead to better interpretation of catch 
per unit effort and provide stock assess-
ments that compare fished and unfished 
populations at appropriate spatial and 
temporal scales (Babcock and MacCall, 
2011; McGilliard et al., 2011). 

CASE STUDY: IMPACT OF 
CALIFORNIA’S MLPA ON THE 
SCIENCE OF MPA NETWORKS
The establishment of California’s MPA 
network is an example of how policy was 
influenced by MPA science and science 
was responsive to the needs of policy
makers. In 1999, the California legisla-
ture enacted the Marine Life Protection 
Act (MLPA), directing the design of a 
statewide MPA network and thus reflect-
ing the conclusions of a recent scien-
tific workgroup (Lubchenco et  al., 
2003; Gleason et  al., 2013). The first 
two attempts to implement the MLPA 
failed. The first employed an “epistemic 
community” approach, in which scien-
tists and agency staff designed an MPA 
network and only later sought pub-
lic input. The second, more inclusive 
“advocacy coalition” approach failed 
primarily due to inadequate funding 
(Weible et al., 2004; Fox et al., 2013). The 
third (successful) attempt shared many 
characteristics with the second attempt, 
but was better funded and facilitated. 
This seven-year planning process enlisted 
a Science Advisory Team (SAT) tasked 
with generating design guidelines for 
the network. The SAT conducted exten-
sive reviews and promoted new research 
to inform those guidelines (reviewed by 
Botsford et al., 2014a). Three of six over-
arching goals of the network identi-
fied in the MLPA included (1) protect-
ing the natural structure and functioning 
of marine ecosystems, (2) restoring and 
enhancing economically and ecologically 
significant species, and (3) requiring the 
system of MPAs to function as an ecologi-
cal network. Following the literature cited 

https://www.seasketch.org
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above, the SAT defined an ecological net-
work as MPAs that were connected to 
one another by larval dispersal. The many 
design criteria that were generated in 
response to these ecosystem, population, 
and network goals are briefly summarized 
here (see also Saarman et al., 2013; White 
et al., 2013a; Botsford et al., 2014a). Using 
these guidelines, stakeholder groups cre-
ated a network of 124 MPAs along the 
nearly 1,500 km length of the California 
coastline (Botsford et al., 2014a).

Two key design criteria identified for 
ecosystem and biodiversity protection 
were representation and replication of the 
many coastal marine ecosystems across 
a network. Two levels of representation 
were recognized: first, characterization 
of ecosystems based on a combination 
of substrate type (rock vs. soft sediment) 
and water depth, and second, geographic 
variation in community composition, or 
“bioregions,” within each of these ecosys-
tems (e.g., Claisse et al., 2018, for south-
ern California). The SAT suggested that 
MPAs be distributed to encompass these 
levels of variation in ecosystem structure, 
and used species-area curves from eco-
logical surveys in each habitat to deter-
mine the minimum ecosystem area an 
MPA would need to encompass to serve 
as a functional replicate.

Criteria for the minimum size of indi-
vidual MPAs combined population and 
ecosystem considerations. The SAT rea-
soned that at a minimum, an MPA must 
encompass the home range of individu-
als to ensure that they can be protected 
throughout their lifetimes. This prompted 
an extensive review of fish home ranges 
(Freiwald, 2012). Additionally, the SAT 
recognized that many fishes inhabit mul-
tiple ecosystems over their lifetimes, 
such as those that undertake ontogenetic 
migrations between habitats (e.g., Fodrie 
and Levin, 2008; Nagelkerken et  al., 
2012). This led to the recommendation 
that MPAs encompass multiple ecosys-
tems, from those on beaches to those in 
deeper shelf waters. 

Criteria for the spacing and spatial 
arrangement of MPAs evolved perhaps 

most rapidly during the MLPA planning 
process. At the outset, the SAT recog-
nized that it would be valuable to spec-
ify some maximum distance between 
neighboring MPAs in order to ensure 
larval connectivity. This was approached 
by using estimates of “average disper-
sal distance” based on genetic informa-
tion, average larval duration, and sim-
plified representations of oceanographic 
flow (Figure 3; Kinlan and Gaines, 2003; 
Largier, 2003). Specifying both minimum 
MPA width and maximum spacing in 
the alongshore dimension has the con-
sequence of indirectly specifying a mini-
mum proportion of the coastline that will 
be protected, which early spatial popu-
lation models suggested was a key vari-
able affecting population persistence in 
MPAs (Botsford et al., 2001). Given those 
fairly limited point estimates of a sin-
gle dispersal distance per species, popu-
lation models were developed to explain 
how different combinations of disper-
sal distance and MPA size interacted to 

affect population persistence and fish-
ery yield (Kaplan and Botsford, 2005; 
White et  al., 2010a, 2010b). An import-
ant lesson that emerged from those anal-
yses was that population dynamics inside 
MPAs depended heavily on fishery man-
agement outside MPAs. By the end of the 
MLPA process, advances in numerical 
ocean circulation modeling and the avail-
ability of high-resolution benthic habitat 
maps made it possible to simulate larval 
connectivity patterns directly. Those con-
nectivity calculations were then used in 
bioeconomic population dynamics mod-
els (White et al., 2013a) to evaluate pos-
sible MPA configurations in a way that 
accounted for spatial variations in dis-
persal pathways. The bioeconomic mod-
els had a side benefit of quantifying the 
possible economic trade-offs of MPA 
placement (i.e.,  lost fishing grounds), 
though the MLPA itself did not have 
economic goals. 

Like MPAs elsewhere in the world 
(https://wcmc.io/8408), California’s MPAs 
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FIGURE 3. Scales of population connectivity relative to California’s Marine Life Protection Area 
(MLPA) size and spacing guidelines and estimates of average propagule (spores or larvae) dis-
persal distances for more than 100 species. Species with short distance dispersing propa-
gules (e.g., macroalgae, many invertebrates, some fishes) could be self-replenishing in MPAs of 
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plots of genetic isolation by distance (Kinlan and Gaines, 2003; Palumbi, 2003; Kinlan et al., 2005). 
Redrawn from Kinlan and Gaines (2003)
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 vary from fully protected (no extractive 
activities) to highly protected (take 
restricted to select species) to even lightly 
protected (broader commercial and rec-
reational fishing allowed). To determine 
the extent to which partial take MPAs 
would contribute to ecosystem protec-
tions, the SAT devised a novel framework 
for evaluating the extent to which allowed 
activities caused deviations in protec-
tion from a no-take reserve (Figure 4; 
Saarman et al., 2013). 

FUTURE CHALLENGES AND 
OPPORTUNITIES FOR MPA 
SCIENCE AND POLICY
Climate Change
Climate change poses both threats and 
opportunities for the policy applications 
of MPAs (Carr et  al., 2017). The perfor-
mances of individual MPAs are especially 
vulnerable to changing environmen-
tal conditions associated with climate 
change (e.g.,  temperature, oxygen, acid-
ity, currents, nutrient levels; e.g. Bruno 
et  al., 2019), which raises questions for 
policymakers as to their efficacy for miti-

gation and adaptation to climate change. 
As ocean currents shift, patterns of larval 
dispersal and connectivity will be altered, 
potentially jeopardizing the functional 
integrity of MPA networks (Fox et  al., 
2016). Conversely, considering MPA 
networks as management tools to miti-
gate the consequences of climate change 
(e.g.,  Chavez et  al., 2017) has spawned 
new design considerations and empir-
ical assessments of their potential roles 
(McLeod et al., 2009; Green et al., 2014; 
Carr et al., 2017). To facilitate the redistri-
bution of species with changing environ-
mental conditions, these considerations 
include spatial designs that span depth 
gradients to allow species to shift to refu-
gia in deeper waters, protection of genetic 
diversity across species ranges, inclu-
sion of habitats that harbor genotypes 
adapted to tolerate predicted future envi-
ronmental conditions, and protection of 
species interactions that resist tropical-
ization and the influx of non-native spe-
cies (e.g., Ling and Johnson, 2012; Bates 
et al., 2014; Caselle et al., 2018). The goal 
of all of these is to enhance both popu-

lation and ecosystem resilience (reviewed 
by Carr et al., 2017, 2018). Understanding 
and predicting the possible fisheries and 
conservation effects of MPAs and MPA 
networks in response to climate change 
is one of the greatest challenges to MPA 
science today. 

Evaluation and Adaptive 
Management
As the global number of MPAs and net-
works grows, opportunities to evaluate 
design and management criteria increase. 
Evaluation of performance to determine 
the efficacy of MPAs in meeting manage-
ment objectives has long been recognized 
as essential (White et  al., 2011; Grorud-
Colvert et al., 2014). There is now a rich 
literature on the performance evalua-
tions of individual MPAs (many cited 
above, and Carr et al., 2018), but no eval-
uations of network performance have 
been conducted. This is in part because 
of the paucity of science-based networks, 
but also because most places in the world 
lack the capacity (i.e.,  the network-wide 
ecological monitoring and connectiv-

FIGURE 4. Decision tree 
flowchart used by the 
Science Advisory Team 
to determine the “level 
of protection” afforded 
by an activity (e.g.,  fish-
ing using a specific gear 
and target species) pro-
posed to be allowed 
in a limited-take MPA 
during California’s MLPA 
planning process. From 
Saarman et al. (2013)
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ity modeling) required for full network 
analyses. Past studies have revealed the 
prolonged timeframes of population 
responses (Figure 5; Caselle et al., 2015) 
and the further delay of community-wide 
responses (Babcock et  al., 2010), as well 
as the importance of accounting for geo-
graphic variation in oceanographic con-
ditions, community structure, and fish-
ing pressure outside MPAs when setting 
expectations and evaluating perfor-
mance across a network (Hamilton et al., 
2010; Cinner et al., 2018; Nickols et al., in 
press). Among various evaluation designs 
proposed (e.g.,  Grorud-Colvert et  al., 
2014), the most promising are approaches 
that combine long-term monitoring 
studies with the coupled population- 
connectivity models described above 
in the Science of MPA Networks for 
Integrated Conservation and Fisheries 
Management section. Such models can 
manipulate the presence of MPAs to 
determine both their relative contribu-
tions and their dependence on the net-
work and the sizes and fishery yields of 
region-wide populations. These evalu-
ation programs necessitate interdisci-
plinary collaborations among empiri-
cists and modelers, ecologists, geneticists, 
oceanographers, geologists, geographers, 
and others, and require the application 
of each discipline’s toolset (Young et  al., 
2017; Addison et al., 2018). 

CLOSING REMARKS 
One obvious consequence of using MPAs 
for both fisheries management and eco-
system and biodiversity conservation is 
the generation of a wealth of scientific 
research. That science has been interdis-
ciplinary and has considered fundamen-
tal aspects of ecological and evolution-
ary processes of organisms, populations, 
communities, and ecosystems. It is 
also clear that science has continually 
informed and influenced the applica-
tions of MPAs for both fisheries manage-
ment and conservation. This interplay 
between science and policy continues 
to expand the scope of each, especially 
as we explore the applications of MPAs 

for ecosystem-​based management, for 
coastal and marine spatial planning, and 
for adaptation and mitigation of a chang-
ing global climate. As broad and influ-
ential as this interaction has been, this 
article has focused solely on the natu-
ral sciences and has not considered the 
critical socioeconomic and biocultural 
aspects of these social-​ecological systems. 
As we grow to recognize and embrace the 
importance of these interactions between 
humans and the marine environment 
through the lens of MPAs, the scope 
and benefits of this evolutionary process  
will only increase. 
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