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SLOW MOTION EARTHQUAKES
Taking the Pulse of Slow Slip with Scientific Ocean Drilling

By Laura M. Wallace, Matt J. Ikari, Demian M. Saffer, and Hiroko Kitajima

Scientists prepare fluid samplers for 
installation in a borehole observatory 
at the Hikurangi subduction zone on 
IODP Expedition 375. Photo credit: Aliki 
Westrate, Expedition 375 Outreach and 
Education Officer
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INTRODUCTION
Slow slip events (SSEs) involve transient 
aseismic slip along a fault, lasting days to 
years, at a rate intermediate between plate 
tectonic displacement rates (centimeters 
per year) and the slip velocity required 
to generate seismic waves (centimeters 
to meters per second). Installation of 
dense, plate-boundary-scale geodetic net-
works in the last two decades has enabled 
detection of these events, revealing their 
importance as a significant mode of fault 
slip. The observation of SSEs and associ-
ated seismic phenomena at subduction 
megathrusts worldwide has created one 
of the most dynamic fields of research in 
seismology and geodesy today (e.g.,  Ide 
et al., 2007; Schwartz and Rokosky, 2007; 
Peng and Gomberg, 2010). Although SSEs 
appear to bridge the gap between typical 
earthquake behavior and steady, aseismic 
slip on faults, the physical mechanisms 
that lead to SSEs and their relationship to 
the destructive, seismic slip on subduc-
tion thrusts remain poorly known.

Evidence for transient creep events 
on continental faults—such as the San 
Andreas—has been noted in a few cases 
for some time (e.g., Goulty and Gilman, 
1978; Sacks et  al., 1982; Linde et  al., 
1996), but such events were not well 
characterized until continuously oper-
ating GPS networks began to reveal epi-
sodic, aseismic fault slip events at sev-
eral subduction zone plate boundaries. 
The first well-documented subduction 

zone slow slip events were discovered in 
southwest Japan (Hirose et al., 1999) and 
Cascadia (Dragert et  al., 2001) at loca-
tions downdip of areas that are thought to 
store strain and then slip catastrophically 
in great earthquakes (so-called “locked 
zones”). These discoveries were quickly 
followed by a succession of observa-
tions of SSEs at other circum-Pacific sub-
duction zones (e.g.,  Kostoglodov et  al., 
2003; Douglas et  al., 2004; Sagiya, 2004; 
Hirose and Obara, 2005; Ohta et al., 2006; 
Wallace and Beavan, 2006; Outerbridge 
et al., 2010; Valee et al., 2013; Ruiz et al., 
2014). In tandem with the geodetic 
observations, seismologists recognized 
the occurrence of tremor at subduction 
zones, an emergent seismic signal pre-
viously associated mainly with volcanic 
processes (Obara, 2002). This was soon 
linked spatially and temporally to many 
geodetically detected slow slip events, 
and was termed “non-volcanic tremor” 
(NVT) at first (Rogers and Dragert, 2003; 
Hirose and Obara, 2005). Coincident 
tremor and slow slip episodes are now 
commonly observed at the Cascadia and 
Nankai Trough subduction zones, and 
are often called “episodic tremor and slip” 
(ETS) events. Observations of tremor 
were followed by recognition of a range 
of slow seismological expressions of slow 
slip, including low frequency and very 
low frequency earthquakes (Shelly et al., 
2006; Ito et  al., 2007), thought to repre-
sent shear slip on the plate boundary 

(Shelly et al., 2007). These tremor and low 
frequency earthquakes are typically con-
sidered to be part of the spectrum of slow 
slip event behavior.

SSEs involve a few to tens of centime-
ters of slip over periods of weeks to years, 
in some cases releasing accumulated tec-
tonic stress equivalent to that of magni-
tude 6.0–7.0 earthquakes. The observa-
tion that these kinds of slow slip events 
likely preceded (and perhaps triggered) 
the 2011 Mw 9.0 Tōhoku-oki (Japan 
Trench) and the 2014 Mw 8.1 Iquique 
(Peru-Chile Trench) subduction plate 
boundary earthquakes (Kato et al., 2012; 
Ito et  al., 2013; Ruiz et  al., 2014) pro-
vided an impetus to clarify the poorly 
understood relationship between SSEs 
and damaging megathrust earthquakes 
(Obara and Kato, 2016). Most well-​
studied SSEs occur along the deep end of 
the earthquake generation zone, for exam-
ple, below the “seismogenic” zone and at 
depths greater than 20–30 km (Dragert 
et al., 2001; Obara et al., 2004; Hirose and 
Obara, 2005; Ohta et  al., 2006; Wallace 
and Beavan, 2010; Radiguet et al., 2012). 
However, recent observations indicate 
that slow slip events are also common to 
the shallow portions of offshore subduc-
tion plate boundaries, at less than 15 km 
depth (Saffer and Wallace, 2015), and 
continue to within a few kilometers of the 
seafloor, possibly all the way to the trench 
(Wallace et al., 2016; Araki et al., 2017). 

Despite the fact that SSEs are now 
widely recognized to play an import-
ant role in the accommodation of plate 
motion at tectonic boundaries, our 
understanding of why they occur is 
largely incomplete. A variety of theories 
regarding the origin of SSEs have been 
proposed; most of these consider epi-
sodic slow slip as a consequence of low 
effective stress (due to elevated fluid pres-
sures) within a conditionally stable fric-
tional regime (see reviews in Saffer and 
Wallace, 2015, and Bürgmann, 2018). 
These hypothesized mechanisms for SSEs 
arise from theoretical and modeling stud-
ies (e.g.,  Liu and Rice, 2007) and indi-
rect interpretations of physical properties 

ABSTRACT. The discovery of a spectrum of slow earthquakes and slow slip events on 
many of Earth’s major tectonic faults has sparked a revolution in the fields of seismol-
ogy, geodesy, and fault mechanics. Until about 15 years ago, it was believed that faults 
either failed rapidly in damaging earthquakes or by creeping at rates of plate tectonic 
motion. However, the widespread observation of episodic, slow fault slip events at plate 
boundaries around the world, including at subduction zones, has revealed that fault slip 
behavior spans a continuum of modes, from steady creep to fast, earthquake-inducing 
slip. Understanding the processes that control these various failure modes is one key 
to unlocking the physics of earthquake nucleation and slip on faults. Scientific ocean 
drilling holds a unique place at the forefront of these efforts by allowing direct access 
to fault zones and sediment in the subsurface where slow slip events occur, by enabling 
near-field monitoring in borehole observatories, and by providing samples of incom-
ing sedimentary succession that comprises the protolith for material in slow slip source 
regions at subduction zones. Here, we summarize fundamental contributions from sci-
entific ocean drilling at subduction zones to this emerging field.
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from seismic imaging of faults known to 
host slow slip (Kodaira et al., 2004; Audet 
et al., 2009; Song et al., 2009; Kitajima and 
Saffer, 2012). Most well-studied subduc-
tion zone SSEs occur too deep (>20 km 
depth) for the high-resolution imaging, 
direct sampling, and in situ measure-
ments within the SSE source region that 
are needed to test these ideas. This lack 
of access has placed inherent limits on 
our ability to resolve the physical pro-
cesses and in situ conditions responsible 

for slow fault slip behavior.
However, shallow SSE regions, where 

slow slip events occur much closer to 
Earth’s surface (<15 km), may provide the 
best chance to resolve outstanding ques-
tions about slow slip. For example, at the 
northern Hikurangi subduction zone off-
shore New Zealand, a recent seafloor geo-
detic experiment has shown that SSEs can 
occur to within 2 km of the seafloor, and 
possibly all the way to the trench (Wallace 
et al., 2016). The close proximity of SSEs 

to the seafloor there presents a remark-
able opportunity to use scientific ocean 
drilling to drill into and sample, col-
lect downhole logs, and conduct mon-
itoring in the very near field of the SSE 
source area. To that end, International 
Ocean Discovery Program (IODP) drill-
ing took place in 2017 and 2018 at north 
Hikurangi on Expeditions 372 (Pecher 
et al., 2018) and 375 (Saffer et al., 2018) 
(Figure 1a), representing the first IODP 
effort specifically targeted at resolving 

FIGURE 1. Four subduction margins with well-characterized shallow slow slip events (SSEs) and slow earthquakes, where IODP drilling has 
also taken place: (a) Hikurangi, (b) Nankai, (c) Japan Trench, and (d) Costa Rica. Black dashed contours are depths to the interface (in kilo-
meters below Earth’s surface); pink shaded areas show the locations of SSEs and slow (very low frequency) earthquake clusters (Ito and 
Obara, 2006; Wallace et al., 2012; Dixon et al., 2014; Sugioka et al., 2012; Ito et al., 2013). Black/white solid contours outline slip in previous 
large plate interface earthquakes at Nankai, Costa Rica, and Northern Japan. Yellow stars show epicenters of historical large subduction 
interface earthquakes at Hikurangi and Nankai. Pink dots show locations of previous IODP drilling. Modified from Saffer and Wallace (2015)
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the origins of SSEs. However, shallow 
SSEs have also been observed at south-
west Japan’s Nankai Trough (Araki et al., 
2017), the Japan Trench (Kato et al., 2012; 
Ito et al., 2013), and Costa Rica’s Middle 
America Trench (Brown et al., 2005; Davis 
et al., 2015), where several IODP expedi-
tions have been undertaken over the last 
20 years (Figure 1). Although the Nankai 
Trough, Japan Trench, and Costa Rica 
scientific drilling efforts were targeted at 
understanding seismogenic (earthquake 
generating) processes, IODP drilling data 
from these regions have provided unex-
pected new insights into SSE processes. 
We expect scientific ocean drilling to 
contribute even more important findings 
to the field of slow earthquakes, as results 
emerge from the recently completed 
Hikurangi subduction zone drilling 
during IODP Expeditions 372 and 375.

LONG-TERM BOREHOLE 
OBSERVATORIES: DETECTION 
AND CHARACTERIZATION 
OF SHALLOW SSES IN THE 
NEAR FIELD
Borehole monitoring systems at IODP 
drill sites offshore have provided some 
of the most robust observations to date 
of crustal strain during shallow subduc-
tion zone SSEs and associated hydrologic 
phenomena. These observatories involve 
a variety of configurations designed to 
monitor pore fluid pressure, tempera-
ture, strain, and tilt in the borehole rock 
formations, and to collect time series 
of formation fluids and flow rates using 
osmotically driven pumps (or so-called 
osmosamplers; e.g., Jannasch et al., 2003). 
In particular, changes in pore fluid pres-
sure recorded in these observatories pro-
vide a highly sensitive measure of volu-
metric strain (Wang, 2004; Araki et  al., 
2017) in offshore regions near a trench 
that involve slip as small as only a few 
centimeters and where other geodetic 
methods lack resolution to detect or 
locate SSEs. Results from these instru-
ments, most notably in the near-trench 
region of the Nankai (Araki et al., 2017) 
and Costa Rican (Davis and Villinger, 

2006; Solomon et  al., 2009; Davis et  al., 
2015) subduction zones (Figure 1), have 
yielded detailed observations of slow 
slip events that provide new constraints 
on location, timing, size, relationship to 
tremor, and potential associated changes 
in fault hydrogeology. 

As one of the primary objectives of 
the Nankai Trough Seismogenic Zone 
Experiment (NanTroSEIZE), IODP 
Expeditions 319, 332, and 365 installed 
borehole observatories at two sites located 
~24 km and 35 km landward of the sub-
duction trench (Figures 1b and 2a). 
Site C0010 was drilled into the megasplay, 
one of the major active thrust faults splay-
ing from the plate boundary, approxi-
mately 24 km from the trench. The bore-
hole intersects the fault at 407 meters 
below seafloor (mbsf); the hole was ini-
tially drilled in 2009, and temporary 
instrument systems were deployed to 
monitor temperature and pore fluid pres-
sure within the borehole (Saffer et  al., 
2010; Kopf et  al., 2011). In 2016, a per-
manent observatory was installed that 
includes pore pressure sensors, a tilt-
meter, an accelerometer, a broadband 
seismometer, and a volumetric strain-
meter (Saffer et  al., 2017). In addition, 
Site  C0002 was drilled in the Kumano 
forearc basin (Figure 2a), about 11 km 
landward of Site  C0010. A permanent 
observatory with the same configuration 
as that at Site  C0010 was installed here 
in 2012. Together, the observatories pro-
vide a multiyear time series of formation 
pore pressure at two locations that define 
a “miniature array” with an ~11 km aper-
ture. Formation fluid pressure changes 
serve as a sensitive proxy for volumetric 
strain during transient slow slip events, 
with the ability to resolve signals as small 
as ~10–20 nanostrain, equivalent to a 
crustal volume strain of approximately 
10–20 parts per billion (Wang, 2004; 
Davis et al., 2009; Araki et al., 2017). 

Since the 2012 installation of the obser-
vatory by IODP, the 5.3-year pressure 
time series reveal eight “strain events” 
that recur quasi-regularly at ~8–15 month 
intervals and with durations of a few days 

to several weeks (Figure 2b; Araki et al., 
2017). These strain events are synchro-
nous at the two boreholes, and some 
(though not all) are accompanied by 
swarms of low frequency tremors in a 
40 km region of the forearc closest to the 
trench (Figure 1b) as detected by Japan’s 
DONET (Dense Oceanfloor Network 
System) cabled seafloor network of seis-
mometers (Kaneda et  al., 2015). Similar 
low frequency earthquakes were observed 
previously in this region using shore-
based networks (Ito and Obara, 2006). 
The sets of synchronous strain signals 
fall into three categories: (1) dilatation 
(extension) at both sites, (2) mixed sig-
nals with compression at Site C0010 and 
dilatation at Site  C0002, and (3) com-
pression at both sites. The magnitudes of 
these signals are best explained as slips of 
~1–4 cm on the plate interface beneath 
the drill sites (Figure 2b), occurring over 
a period of days for the shortest events, 
to weeks for the longest. The sign of the 
strain signal allows delineation of the 
slipping regions, and suggests that most 
of the events are centered either land-
ward, between the two boreholes (located 
~30 km from the trench), or seaward of 
both sites, with slip possibly extending all 
the way to the trench. 

These observations, enabled by off-
shore borehole observatories installed as 
part of IODP drilling, also indicate that 
repeating SSEs occur at shallow depths 
along the Nankai margin updip of the 
locked seismogenic zone and possi-
bly extend to the trench. A third obser-
vatory, recently installed in the accre-
tionary prism within 2 km of the trench 
axis during IODP Expedition  380, will 
provide key constraints on the seaward 
(trenchward) extent of slip in these SSEs 
(Kinoshita et  al., 2018). The amount of 
slip deduced from the observatory sig-
nals suggests that SSEs accommodate 
~30%–50% of the total amount of plate 
convergence, broadly consistent with par-
tial seismic coupling (on order of 50%) 
in this area, as reported on the basis of a 
regional offshore GPS-A network (Yokota 
et  al., 2016). This finding is especially 
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noteworthy because the SSEs occur at a 
margin characterized by repeating great 
(Mw ~8) earthquakes that are thought 
to rupture at or close to seafloor depths 
(Satake, 1993; Sakaguchi et al., 2011), in 
a place where slow slip events were not 
necessarily expected. 

Along the Costa Rican subduction 
margin, two borehole observatories were 
installed in 2002 during Ocean Drilling 
Program (ODP) Leg  205, offshore the 

Nicoya Peninsula in Costa Rica (Morris 
et  al., 2003; Davis and Villinger, 2006; 
Figure 1d). One of the observatories (in 
Hole  1253A) was installed in the sub-
ducting Cocos Plate (~175 m seaward 
of the trench), penetrating the subduct-
ing sediments and underlying base-
ment to ~600 mbsf. The second obser-
vatory (in Hole  1255A) penetrated the 
subduction thrust ~500 m landward of 
the trench at a depth of ~144 mbsf, to a 

total depth of 153 mbsf. Both observa-
tories involve formation pore pressure 
monitoring, as well as geochemical fluid 
sampling and flow rate monitoring capa-
bilities, using osmosamplers and osmo- 
flowmeters (Jannasch et  al., 2003; 
Solomon et  al., 2009). These observato-
ries were originally intended to assess the 
influence of the igneous basement on fluid 
flow, as well as to quantify the fluid pres-
sure state on the plate boundary thrust 

FIGURE 2. (a) Seismic line showing the locations of several Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) drill sites. Open white cir-
cles show the depths of pore pressure monitoring intervals at observatory boreholes C0002G (931–980 m) and C0010A (389-407 m). (b) Summary of 
SSE recurrence, shown by pressure and strain transients at Holes C0002G (blue) and C0010A (red). Dashed vertical lines indicate the duration of each 
event. A mixture of pressure increases (compressional strain; solid circles) and decreases (dilatational strain; open squares) are observed, and the sign 
of the strain provides constraints on the location of the slipping region in each event (after Araki et al., 2017). The Oct. 2015 event (denoted by aster-
isk) exhibited extension only at Hole C0002G, and initial compression followed by dilatation at Hole C0010A. The inset shows formation pore pressure 
records with oceanographic signals removed for an example SSE in March 2014. The thin line shows smoothed data using a 12 hr window. 
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and within the hanging wall of the fault 
system. However, they were also fortu-
itously located in a region of shallow slow 
slip events offshore the Nicoya Peninsula, 
as detected by a shore-based continuous 
GPS network (Dixon et al., 2014). 

There is now mounting evidence for 
transient changes in pore pressure, and 
though less clear, accompanying shifts 
in fluid geochemistry and flow rates 
within the Costa Rica observatories that 
coincide with SSEs detected by onshore 
GPS sites. Solomon et  al. (2009) identi-
fied two changes in fluid flow rates and 
fluid geochemistry (e.g.,  in the mea-
sured 87Sr/86Sr isotope ratios) that coin-
cide with pore pressure shifts, which in 
turn are consistent with deformation due 
to a migrating slow slip event. This was 
the first evidence from an IODP bore-
hole observatory that slow slip events 
impact hydrological processes and fluid 
geochemistry on the shallow subduction 
interface. Additional pore pressure tran-
sients have been observed following geo-
detically detected SSEs, which are inter-
preted as a delayed updip migration of 
SSEs to the trench (Davis et al., 2015). For 
example, in the weeks following a geodet-
ically detected SSE in 2007, the observed 
pore pressure increases at Hole  1255A, 
combined with a pore pressure decrease 
at Hole 1253A as well as 1.4 cm of uplift 
suggested from the wellhead pressure 
data at Hole 1255A, led Davis et al. (2015) 
to suggest that the 2007 SSE involved up 
to 11 cm of slip to the trench. 

DRILLING TO SAMPLE 
SSE FAULTS: FAULT ROCK 
PROPERTIES AND IN SITU 
CONDITIONS 
Fault Friction and Effective 
Stress States: A Framework 
to Understand Unstable Slip 
and SSEs 
Laboratory-based shearing experiments 
that simulate fault slip are one common 
approach to characterizing the strength 
and slip behavior of fault zones. In par-
ticular, rate-and-state friction—a the-
ory that describes variations in frictional 

strength as functions of driving velocity 
(rate) and time (state)—provides a widely 
used and valuable theoretical framework 
for understanding fault sliding stabil-
ity as it relates to earthquake nucleation 
and propagation, as well as other phe-
nomena including fault healing, afterslip, 
and aseismic creep (e.g., Dieterich, 1979, 
1981; Ruina, 1983; Marone, 1998). In the 
context of this theory, an increase in fault 
strength (or its resistance to sliding) as 

slip speed increases is known as velocity- 
strengthening behavior. Faults with this 
property are expected to slip aseismi-
cally, manifested as creep or earthquake 
afterslip. In contrast, velocity-​weakening 
behavior, in which friction or resis-
tance to sliding decreases with increas-
ing sliding velocity, is a prerequisite for 
the nucleation of unstable, rapid slip 
that results in earthquakes (e.g., Marone, 
1998; Scholz, 2002). Slow slip events are 
thought to occur where rock frictional 
properties are “conditionally stable,” 
or near the transition from velocity-​
weakening to velocity-strengthening 
behavior. Although some previous labo-
ratory studies have provided important 
insights that apply to slow slip phenom-
ena, detailed investigations of natural 
material from major fault zones, partic-
ularly those that host slow slip, remain 
rare, and in situ sampling of these active 
faults generally requires drilling.

Although seismic fault slip requires 
velocity-weakening friction, the degree 
of instability also depends on other fac-
tors such as effective stress on the fault 
and elastic response properties of the 
surrounding fault rocks (e.g.,  Dieterich, 
1986; Scholz, 1998). Under certain con-
ditions, for example, if the rock fric-
tional properties straddle the transi-
tion between velocity-weakening and 
velocity-​strengthening behavior, faults 

may be quasi-unstable and exhibit oscil-
latory or slow failure (e.g.,  Baumberger 
et  al., 1999; Leeman et  al., 2016), such 
as observed during slow slip events. 
Another condition by which faults may 
exhibit transitional stability is low effec-
tive normal stress acting across the 
fault, either as a result of small total 
stresses related to shallow burial depth, 
or due to the presence of high pore 
fluid pressure (e.g.,  Scholz, 1998; Saffer 
and Tobin, 2011). 

On the basis of these ideas, prevailing 
hypotheses for the occurrence of emer-
gent slow slip events have focused on 
the roles of low effective stress, medi-
ated by elevated pore fluid pressure, and/
or frictional properties near the transi-
tion from velocity weakening to veloc-
ity strengthening (e.g.,  Kodaira et  al., 
2004; Saffer and Wallace, 2015). These 
ideas have been demonstrated in numer-
ical models (Liu and Rice, 2007) and 

 “In total, the powerful combination of these 
borehole observatories and IODP drilling, logging, 

and sampling of fault zones—where slow slip 
may occur—enables us to draw connections 

between fault slip behavior and fault architecture, 
frictional behavior, lithology, fluid composition, 

and physical properties.

”
. 
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laboratory experiments (Leeman et  al., 
2016; Scuderi et al., 2016), and are con-
sistent with the inferred presence of ele-
vated in situ pore pressure in SSE and slow 
earthquake source regions (e.g.,  Song 
et  al., 2009; Kitajima and Saffer, 2012). 
The testing of natural samples is a key 
for experimental studies of friction tar-
geting slow slip, because they preserve 
in situ composition and rock proper-
ties. IODP drilling has provided unique 
access to these materials from within 
shallow fault zones implicated in SSEs 
at several margins (e.g.,  Nankai, Costa 
Rica), as well as sediments on the incom-
ing (subducting) plate that comprise the 
protolith for SSE fault zones at depth 
(e.g.,  Sumatra, Hikurangi). Samples and 
geophysical logs obtained via IODP drill-
ing have also enabled a range of deforma-
tion experiments that allow estimation of 
in situ pore fluid pressure, porosity, and 
stress state at the drill sites and by infer-
ence within the surrounding volume of 
the crust (e.g.,  Tobin and Saffer, 2009; 
Kitajima and Saffer, 2012).

Insights from Experimental 
Studies on IODP Drill Cores
Friction Studies
In the Nankai Trough, SSEs, low fre-
quency earthquakes (LFE), and very low 
frequency earthquakes (VLFEs) occur 
within the accretionary prism at shal-
low depths, likely on splay faults (e.g., Ito 
and Obara, 2006; Obana and Kodiara, 
2009) and on the plate boundary thrust 
(Sugioka et al., 2012; Araki et al., 2017). 
Laboratory friction experiments have 
been conducted on samples recovered 
by ODP and IODP drilling across three 
major fault zones: (1) a major out-of- 
sequence splay fault (the megasplay; 
IODP Site C0004), (2) the frontal thrust 
zone near the trench (Site C0007) along 
the NanTroSEIZE transect (Figure 2a), 
and (3) the décollement zone near the 
trench (ODP Site  1174) on the Muroto 
transect ~200 km to the southwest 
(Shipboard Scientific Party, 2001). These 
results primarily document velocity- 
strengthening friction but also show that 
the degree of velocity-strengthening vs. 

velocity-weakening behavior can vary 
with sliding velocity (Ikari et  al., 2009; 
Ikari and Saffer, 2011; Figure 3). Examples 
where frictional parameters strad-
dle the velocity-​​strengthening/​velocity-​
weakening transition occur consistently 
around slip velocities (~1 µm s–1) simi-
lar to those of very low frequency earth-
quakes in the Nankai accretionary prism 
(Ito and Obara, 2006; Saffer and Wallace, 
2015). Furthermore, data from samples at 
Sites C0004 and 1174 reveal that weak-
ening due to accumulating slip could be 
an additional mechanism promoting the 
generation of low-velocity instabilities 
(Figure 3; Ikari et al., 2013).

In regions where fault zones have not 
been sampled, scientific ocean drilling 
still provides critical information on fault 
slip behavior through access to sediments 
on the incoming plate. These “subduction 
inputs” eventually host or line the plate 
interface, and laboratory testing of these 
sediments reveals they have characteris-
tics relevant to the shallow plate bound-
ary (e.g. Underwood, 2007; Hüpers et al., 
2017; Ikari et al., 2018). An example is the 
Hikurangi margin offshore New Zealand, 
where geodetic observations provide a 
robust record of repeating slow slip events 
(Wallace et  al., 2012, 2016; Wallace and 
Beavan, 2010). Laboratory experiments 
have been conducted on a sample of 
carbonate-​rich sediment collected at ODP 
Site  1124, located seaward of the defor-
mation front, that is expected to host the 
plate boundary (Rabinowitz et al., 2018). 
These experiments document a gradual 
shift from velocity-weakening to velocity- 
strengthening friction as a function of 
sliding velocity, with the transition occur-
ring at <1 µm s–1, which is broadly similar 
to slip rates of SSEs at the Hikurangi mar-
gin determined from geodetic studies.

The variation in frictional behavior 
with sliding velocity observed in experi-
ments on very fine-grained natural fault 
zone materials, so-called fault gouges, 
incoming sediments to subduction zones, 
and synthetic clay-rich fault gouges 
(e.g.,  Ikari et al., 2009; Saito et al., 2013; 
Saffer and Wallace, 2015) highlights the 
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importance of characterizing frictional 
behavior across a wide range of slip rates. 
The behavior of natural fault materials at 
very low sliding velocities, spanning slip 
rates from plate tectonic to slow earth-
quake to SSE, has emerged as particularly 
important to understanding the nucle-
ation and generation of SSEs. A suite of 
experiments was recently conducted on 
fault zone samples at slip rates much lower 
than those typically explored in experi-
mental rate-and-state friction studies but 
comparable to plate convergence rates of a 
few centimeters per year. The first of these 
“slow” experiments was performed on a 
sample from the shallow plate bound-
ary fault zone within the region of the 
2011 Tōhoku-oki earthquake where the 
coseismic slip was >50 m; this sample was 
recovered from IODP Site C0019 during 
the Japan Trench Fast Drilling Project 
(JFAST; Chester et  al., 2013). These 
experiments revealed that when driven 
at plate tectonic motion rates, the fault 
samples exhibited velocity-weakening 

friction, generating laboratory SSEs char-
acterized by strength perturbations with 
stress drops and peak slip velocities simi-
lar to those observed geodetically during 
the actual Tōhoku-oki earthquake (Ikari 
et  al., 2015; Figure 4). Tests on IODP 
drill core samples from other subduction 
zones where shallow SSEs are known to 
occur, such as the Nankai Trough, Japan 
Trench, and Costa Rica, yield similar 
results (Ikari and Kopf, 2017). 

The identification of frictional behav-
ior conducive to shallow slow slip also 
carries important implications for earth-
quake hazards. If slow slip reflects the 
potential for velocity-weakening (and 
thus seismic) behavior, these regions 
could also be susceptible to shallow 
coseismic slip or tsunami earthquakes, 
depending on different loading condi-
tions. Therefore, compared to purely 
creeping fault conditions, these regions 
may be at greater risk than previously 
thought (e.g., Polet and Kanamori, 2000; 
Lay and Kanamori, 2011). Thus far, 

laboratory experiments on natural fault 
zone samples collected via IODP drill-
ing have provided important insights into 
the mechanisms of slow fault slip in sev-
eral active subduction zones. Continued 
refinement of our understanding of shal-
low fault slip and characterizations of 
other regions will depend critically on 
the continued recovery of core material 
by scientific ocean drilling. 

Constraints on Fluid and Stress States
An additional key to understanding 
the origin of transient slow slip events 
requires quantification of in situ effec-
tive stress states and pore fluid pressures 
within SSE source regions. The shallow 
portion of the Nankai Trough, where low 
frequency earthquakes and SSEs occur 
(Ito and Obara, 2006; Sugioka et al., 2012; 
Araki et  al., 2017), coincides with low 
seismic velocity zones revealed in seismic 
reflection and refraction studies (Park 
et al., 2010; Kamei et al., 2012). Kitajima 
and Saffer (2012) conducted deformation 
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experiments on IODP cores recovered 
during the NanTroSEIZE project to con-
strain relations between P-wave veloc-
ity, porosity, and effective mean stress 
under simulated tectonic loading con-
ditions. Combined with P-wave velocity 
values from seismic reflection and refrac-
tion data, their analysis reveals that pore 
pressure exceeds 90% of lithostatic pres-
sure in the region of low Vp and is coin-
cident with the locations of observed 
VLFEs and SSEs (Figure 5). The elevated 
pore pressure is interpreted to result from 
enhanced mechanical loading by lateral 
tectonic stresses in the wider subduction 
zone area. The integration of core and 
seismic data to estimate pore pressure 
in the near-trench region at the Nankai 
Trough is arguably the most robust infer-
ence of pore fluid pressure available for a 
region where slow slip and tremor occur. 

Other studies have also focused on 
quantifying in situ stress and pore pres-
sure in shallow subduction zones by inte-
grating laboratory deformation experi-
ments on IODP cores, seismic reflection 
surveys, drilling and logging data, and 

numerical modeling (Spinelli et al., 2006; 
Tobin and Saffer, 2009; Huffman et  al., 
2016; Brodsky et  al., 2017; Han et  al., 
2017; Li et al., 2018). Elevated pore pres-
sure has been estimated from seismic 
reflection and drilling data within the 
underthrust sediments in regions that 
are ~20 km from the trenches along the 
Muroto transect of the Nankai Trough 
(Tobin and Saffer, 2009), the Central 
Aleutian margin (Li et  al., 2018), and 
the Cascadia margin (Han et  al., 2017). 
Hydrologic models that simulate fluid 
production and flow based on IODP drill-
ing data and laboratory measurements on 
core samples also suggest that pore pres-
sure at the Costa Rica subduction zone 
is nearly lithostatic (as a function of the 
rock overburden) beneath the shallow 
plate interface where SSEs may propa-
gate to the trench, whereas it is hydro-
static (with fluid pressures at equilibrium 
at depth) to slightly overpressured in the 
overriding plate (Spinelli et  al., 2006). 
Detailed analyses of borehole stress indi-
cators combined with rock strength data 
on core samples further reveals that the 

in situ stress state may vary spatially and 
temporally and that differential stresses 
in the near field of the near-trench region 
of the subduction thrust may be very 
low, suggesting that shallow SSE source 
regions are sites of high pore pressure, 
low effective stresses, and low strength 
(e.g., Huffman and Saffer, 2016; Brodsky 
et al., 2017). Inferences of fluid pressure 
conditions and stress states from drilling 
and seismic data, laboratory experiments, 
and modeling studies require increased 
integration with seismological and geo-
detic observations of SSEs, tremor, and 
low frequency earthquakes to even fur-
ther advance our understanding of tran-
sient slow slip phenomena.

IODP DRILLING FOCUSED 
ON SHALLOW SSES AT THE 
HIKURANGI SUBDUCTION ZONE, 
NEW ZEALAND
Slow slip events at the northern 
Hikurangi subduction margin, New 
Zealand, are among the best-documented 
shallow SSEs on Earth. The regularity and 
well-characterized short repeat inter-
val (one to two years) of the Hikurangi 
SSEs (Wallace and Beavan, 2010; Wallace 
et al., 2012) allow monitoring over multi-
ple SSE cycles, with the potential to doc-
ument the spatial and temporal distribu-
tion of strain accumulation and release in 
the very-near field of the SSEs, as well as 
any associated hydrogeologic phenom-
ena. The close proximity of the seafloor 
to the north Hikurangi SSEs (< 2–15 km; 
Wallace et  al., 2016; Figure 6) enables 
sampling of rocks that are eventually 
transported downdip to the known SSE 
source region, revealing the rock prop-
erties, composition, and lithologic and 
structural character of material that 
hosts slow slip. 

IODP Expeditions 372 (Pecher et  al., 
2018) and 375 (Saffer et  al., 2018) were 
mounted to investigate SSEs at northern 
Hikurangi, and together constitute the 
first-ever scientific drilling effort under-
taken specifically to target transient 
slow slip behavior. The processes and in 
situ conditions that underlie subduction 
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zone SSEs were examined by coring and 
logging while drilling (LWD) through 
one of the main active faults near the 
deformation front (Site  U1518), the 
upper plate overlying the region of large 
slow slip (Site  U1519), and the incom-
ing sedimentary succession and igne-
ous basement (Sites U1520 and U1526) 
(Figures 6 and 7). Expedition  375 also 
undertook installation of borehole obser-
vatories within the active fault (U1518) 
and upper plate (U1519). Together, the 
coring, logging, and observatory data 
will test a suite of hypotheses about the 
fundamental mechanics and behavior of 
slow slip events and their relationship to 
potentially damaging earthquakes along 
the subduction interface. 

The scientific objectives of the 
Hikurangi IODP drilling programs are 
three-fold: (1) to document the physi-
cal, hydrogeological, and chemical prop-
erties, lithology, geometry, microstruc-
ture, and thermal state of one of the most 
active faults near the trench, as well as 
the inputs of sediment and upper igne-
ous crust of the subducting Pacific Plate, 
with an emphasis on intervals that host, 
or will eventually host, SSEs; (2) to char-
acterize the stress regime, thermal struc-
ture, porosity, permeability, lithology, 
pore fluid pressure state, fluid chemistry, 
flow pathways, and structural geology of 
the upper plate overlying the SSE source 
region; and (3) to install observatories 
in the upper plate and an active out-of-​
sequence thrust that span the SSE source 
region, in order to monitor volumetric 
strain (using pore pressure as a proxy) 
and the evolution of physical, hydrolog-
ical, and chemical properties throughout 
the SSE cycle. 

These objectives are designed to 
address key questions regarding the gen-
eration of slow slip and the mechanics of 
subduction megathrusts. In particular, 
an overarching working hypothesis to be 
tested by the data and samples acquired 
at the Hikurangi margin is that slow 
earthquakes occur in regions containing 
highly overpressurized fluids, under low 
effective normal stress, and on faults with 

transitional frictional behavior character-
ized by geometric and compositional het-
erogeneities. Data and samples from the 
Hikurangi margin will also enable eval-
uation of the role that temperature and 
metamorphism may play in these pro-
cesses. The observatories, which will 
be in place for multiple SSE cycles, will 
reveal the influence of slow slip events 
on fluid flow and deformation within the 

fault zone and upper plate. Downhole 
pore pressure sensing in both observato-
ries (at U1518 and U1519; Figure 7) will 
provide a sensitive proxy for volumetric 
strain, and will help resolve the detailed 
spatiotemporal evolution of shallow 
slow slip, as well as much smaller SSEs 
than is currently possible using conven-
tional surface-based geodetic techniques 
(e.g., Araki et al., 2017). 
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SUMMARY
The data and samples gathered during 
several recent IODP expeditions to 
study slow slip events in subduction 
zone megathrust settings have been and 
remain the subject of wide-ranging post-​
expedition research efforts. Data from 
borehole seismic observatories offshore 
Japan and Costa Rica are retrieved regu-
larly, and in the case of the NanTroSEIZE 
observatories, are transmitted in real 
time via the DONET cabled network. 
The first data from similar CORK 
(sealed borehole) observatories offshore 
New Zealand at the northern Hikurangi 
subduction margin will be retrieved 
within the next few years.

In total, the powerful combination of 
these borehole observatories and IODP 
drilling, logging, and sampling of fault 
zones—where slow slip may occur—
enables us to draw connections between 
fault slip behavior and fault architec-
ture, frictional behavior, lithology, fluid 
composition, and physical properties. 
Over the coming years, the results from 
past and future scientific ocean drilling 
expeditions that target shallow slow slip 
events will produce an important step-
change in our understanding of slow 
slip processes and the mechanics of sub-
duction megathrusts. 
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