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Chaotic Variability of Ocean  
Heat Content CLIMATE-RELEVANT FEATURES AND 

	 OBSERVATIONAL IMPLICATIONS

ABSTRACT. Global ocean models that admit mesoscale turbulence spontaneously 
generate a substantial interannual-to-multidecadal chaotic intrinsic variability in the 
absence of atmospheric forcing variability at these timescales. This phenomenon is 
substantially weaker in non-turbulent ocean models but provides a marked stochastic 
flavor to the low-​frequency variability in eddying ocean models, which are being cou-
pled to the atmosphere for next-generation climate projections. In order to disentangle 
the atmospherically forced and intrinsic ocean variabilities, the OCCIPUT (OceaniC 
Chaos – ImPacts, strUcture, predicTability) project performed a long (1960–2015), 
large ensemble (50 members) of global ocean/sea ice 1/4° simulations driven by the 
same atmospheric reanalysis, but with perturbed initial conditions. Subsequent ensem-
ble statistics show that the ocean variability can be seen as a broadband “noise,” with 
characteristic scales reaching multiple decades and basin sizes, locally modulated by 
the atmospheric variability. In several mid-latitude regions, chaotic processes have 
more impact than atmospheric variability on both the low-frequency variability and 
the long-term trends of regional ocean heat content. Consequently, certain climate- 
relevant oceanic signals cannot be unambiguously attributed to atmospheric variabil-
ity, raising new issues for the detection, attribution, and interpretation of oceanic heat 
variability and trends in the presence of mesoscale turbulence.

1	 Zivkovic and Rypdal (2013) discuss the stochastic or chaotic nature of ENSO dynamics. For the sake of simplicity, in this paper we will label as chaotic the part of a system's 
variability that has different phases in different ensemble members despite their identical deterministic equations and external forcing.

CLIMATIC TRENDS 
AND VARIABILITY
The release of greenhouse gases (GHGs) 
into the atmosphere by human activi-
ties since the Industrial Revolution has 
increased the amount of heat stored in the 
climate system. Over the last five decades, 
more than 90% of this excess heat has 
been transferred to the ocean (Church 
et al., 2011; Rhein et al., 2013). The sub-
sequent thermal expansion of seawater, 
together with the enhanced melting of 

glaciers and ice sheets, has induced most 
of the observed global mean sea 
level rise at a rate of 3 ± 0.4 mm yr–1 
since 1993 (Nerem et  al., 2018). The 
Intergovernmental Panel on Climate 
Change’s Fifth Assessment Report (IPCC, 
2013) concludes that human activities 
have very likely impacted the observed 
trends of other globally averaged climate 
indices, such as surface air temperature 
since 1951, sea level, and 0–700 m ocean 
heat content since the 1970s.

Such measures of likeliness are often 
based on the dispersion obtained within 
ensembles of Atmosphere-Ocean General 
Circulation Model (AOGCM) simula-
tions, comprising, for instance, integra-
tions of several AOGCMs (e.g., Coupled 
Model Intercomparison Project Phase 5, 
or CMIP5; Taylor et al., 2012), or several 
integrations of a given AOGCM subject 
to slight initial perturbations. Because 
the coupled atmosphere-ocean system 
is nonlinear, such small initial pertur-
bations may grow, and ensemble mem-
bers progressively decorrelate in spite 
of their identical dynamics and exter-
nal forcings (i.e., specified GHG concen-
tration increase, volcanic eruption time 
series, etc.). Averaging over all ensemble 
members yields time series of what may 
be called the forced variability (i.e.,  the 
deterministic response of all members to 
their common forcing). Subtracting this 
forced variability from each member then 
yields, for each member, what we will call 
the chaotic variability of the system under 
consideration, whose temporal evolution 
is uncorrelated among the members. The 
El Niño-Southern Oscillation (ENSO) is 
a well-known example of a chaotic mode 
of coupled variability1.
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OCEANIC TRENDS 
AND VARIABILITY
The ocean has much greater heat capacity 
than the atmosphere: the large observed 
increase in ocean heat content (OHC) 
is associated with modest oceanic tem-
perature increases, which must be mon-
itored accurately. The long-term trend of 
OHC also has a complex, non-uniform, 
three-dimensional structure (e.g.,  Llovel 
et al., 2010; Rhein et al., 2013) set by ocean 
dynamics and ocean basin geometry. 
Monitoring the OHC trend thus requires 
a global array of three-​dimensional 
sensors; the Argo program has provided 
such a relatively dense array since the 
2000s (Riser et al., 2016) above 2,000 m, 
away from continental shelves. However, 
much sparser temperature measurements 
are available before this time and below 
this depth, yielding larger uncertain-
ties for temperature trends over the pre-
ceding decades, as well as in the abyss 
(e.g., Purkey and Johnson, 2010). 

The oceanic variability also includes 
multidecadal fluctuations, such as the 
Atlantic Multidecadal Variability or 
AMV (Menary et  al., 2012), which are 
longer than the length of many available 
time series. Disentangling climate change 
signals from such undersampled, multi
decadal variations is another challenge 
for the detection of long-term trends in 
the ocean, and their attribution to human 
activities (Bellomo et  al., 2017). Care is 
therefore required in deriving accurate 
long-term temperature trends from the 
available, inhomogeneous, finite-length 
oceanic time series. 

CLIMATE AND OCEAN 
SIMULATIONS
AOGCM simulations and atmospher-
ically driven ocean-ice model simula-
tions complement observations. Model 
data may be used for the characteri-
zation and interpretation of climatic 
modes, and the detection and attribu-
tion of observed anthropogenic trends, 
for example (e.g.,  Gleckler et  al., 2012). 
Most CMIP-class AOGCMs used for this 
purpose have a horizontal grid spacing 

in the 1°–2° range (100–200 km). Such 
models explicitly represent certain non-
linearities of the climate system, among 
which are weather-related chaotic atmo-
spheric turbulence (spatial scales of about 
1,000  km) and certain feedback mecha-
nisms between the atmosphere and the 
ocean. Such nonlinear effects are indeed 
key for the simulation of the chaotic vari-
ability of coupled modes of climate vari-
ability, including ENSO and the AMV.

However, the ocean components of 
these AOGCMs are mostly laminar: 
they are too coarse to explicitly represent 
the oceanic counterpart of atmospheric 
weather systems (i.e., the so-called meso-
scale turbulence, with typical scales of 
about 100 km), whose effects are instead 
crudely parameterized (usually by deter-
ministic methods, and increasingly by 
stochastic methods). When the hori-
zontal grid spacing of ocean models is 
refined to roughly 1/4° (about 25 km), 
the hydrodynamic instabilities that pro-
duce mesoscale turbulence start to be 
admitted explicitly. Mesoscale dynamics 
are involved in many oceanic processes, 
and turbulent ocean models provide 
much more consistent representations 
of the oceanic state and variability over 
a wide range of spatiotemporal scales 
(Barnier et al., 2010). As explained in the 
following, high-resolution ocean models 
provide a more realistic, but profoundly 
different, view of ocean variability com-
pared to the laminar regime.

CHAOTIC INTRINSIC VARIABILITY 
IN THE OCEAN: DYNAMICS
Mesoscale turbulence is a major contrib-
utor to the oceanic kinetic energy spec-
trum (Ferrari and Wunsch, 2009), with 
timescales on the order of weeks instead 
of days for its atmospheric counterpart. 
Mesoscale variability is strongly non-
linear; its temporal behavior is irregular 
and intermittent, and it emerges sponta-
neously through hydrodynamic instabil-
ities, even under constant atmospheric 
forcing. Mesoscale oceanic variability 
is therefore a relatively high-frequency, 
small-scale (and the best-known) example 

of chaotic intrinsic variability (CIV). 
Mesoscale turbulence can force strong 

interannual fluctuations of large-scale 
flows along topographic slopes (Venaille 
et  al., 2011). Nonlinear interactions 
between mesoscale eddies also induce 
“inverse cascades” of kinetic energy, where 
the spatial (Fjortoft, 1953; Kraichnan, 
1967; Charney, 1971) and temporal 
(Arbic et  al., 2012) scales of mesoscale 
structures spontaneously increase over 
time. Provided that other processes do not 
oppose these cascades, the intrinsic and 
chaotic character of small-scale meso-
scale variability is therefore expected to 
propagate toward larger and slower scales, 
and feed a large-scale low-frequency CIV. 
“Low-frequency” will hereafter refer to 
fluctuations having periods longer than 
one year (interannual and slower), and 
will be noted LF. Analyses of observations 
as well as ocean-only and AOGCM sim-
ulations indeed confirm the existence of 
such inverse cascades (Scott and Wang, 
2005; Arbic et  al., 2014; O’Rourke et  al., 
2018; Sérazin et al., in press).

Hydrodynamic instabilities at the 
mesoscale are not the only source of 
LF CIV in the ocean. Certain laminar 
ocean models simulate large-scale insta-
bilities and produce some multidecadal 
CIV (Colin de Verdière and Huck, 1999; 
O’Kane et al., 2013; Sévellec and Fedorov, 
2013; Wolfe et  al., 2017). In the turbu-
lent regime, large-scale and mesoscale 
instabilities may in fact coexist and sus-
tain multidecadal and interannual CIV, 
respectively (Huck et al., 2015). 

CHAOTIC INTRINSIC VARIABILITY 
IN THE OCEAN: FEATURES IN 
REALISTIC SIMULATIONS
The left panels in Figure 1 present the 
November 1997 state of the LF sea level 
variability simulated by an “eddy-active” 
(1/12°, i.e.,  about 10 km resolution) 
global ocean model; this model was 
driven by full forcing2, and therefore sim-
ulates variability that mimics the real 
ocean. Over this period, the prescribed 
atmospheric variability was characterized 
by the 1997–1998 El  Niño event, which 
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forced the strong, large-scale sea level 
response visible at low latitudes (bottom 
left). Smaller mesoscale eddies and fronts 
are superimposed on this large-scale 
signal almost everywhere in the global 
ocean (middle left). 

The same model was then driven by 
climatological forcing3 devoid of any 
interannual and subannual frequencies, 

in order to isolate the LF CIV produced 
by the model. The right panels in Figure 1 
show that despite the absence of any LF 
atmospheric variability, a strong LF CIV 
(upper) emerges, comprised of small 
mesoscale structures and zonally elon-
gated “striations”4 (middle), and much 
larger-scale patterns (bottom). The sea 
level expression of LF CIV is comparable 

in amplitude with its fully forced counter-
part in mid-latitude turbulent regions, in 
particular in the Antarctic Circumpolar 
Current (ACC), the Gulf Stream, and 
the Kuroshio, and their eastward exten-
sions. This LF CIV is very weak in 2° res-
olution ocean models (Penduff et  al., 
2011; Grégorio et  al., 2015), hence, pre-
sumably also in non-eddying CMIP-class 

2	In full forcing, the atmospheric variables used in the calculation of the ocean model surface boundary conditions are obtained from an atmospheric reanalysis. These atmo-
spheric variables contain the full range of scales reconstructed by climate centers (ECMWF in the present case): from six-hourly to decadal timescales, and from a few 
degrees to global space scales.

3	Climatological forcing is derived from the mean annual cycle of the full atmospheric fields, and is repeatedly applied for several decades at the ocean model surface in 
order to isolate the oceanic LF CIV.

4	Altimeter observations confirm the existence of such non-stationary striations (https://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2011/poster/​MultipleMigrating​
Quasi-zonalJet-likeStructures_Melnichenko.pdf). See Chen et al. (2016), and the studies they discuss, for a review of these structures’ dynamics and their tight relation with 
mesoscale eddies.

(b) Repeated Climatological Forcing
I-Experiment

(a) Full Reanalyzed Forcing
T-Experiment
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FIGURE 1. Sea level anomaly in November 1997 in two NEMO (European Modelling of the Ocean) simulations at 1/12° resolution: one is driven by full 
forcing (a), the other by climatological forcing devoid of any interannual variability (b). All fields were low-pass filtered in time to remove periods shorter 
than 18 months. The top panel shows all spatial scales, the middle scales smaller than 6°, and the bottom scales larger than 12°. From Sérazin et al. (2015)

https://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2011/poster/MultipleMigratingQuasi-zonalJet-likeStructures_Melnichenko.pdf
https://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2011/poster/MultipleMigratingQuasi-zonalJet-likeStructures_Melnichenko.pdf


Oceanography |  Vol.31, No.266

AOGCMs. Its possible manifestations in 
AOGCMs resolving mesoscale turbu-
lence are discussed in the last section. 

The signature of LF CIV in realis-
tic ocean models can be found in most 
oceanic variables and in various climate 
indices, including sea surface height 
(SSH; Penduff et al., 2011; Sérazin et al., 
2015), sea surface temperature (SST; 
Sérazin, 2016), Atlantic meridional over-
turning circulation (AMOC) and heat 
transport (Grégorio et  al., 2015), and 
large-scale transports above topography 
(Sgubin et al., 2014). But, does the LF CIV 
affect subsurface temperatures and OHC 
as well? In the following, we propose to 
disentangle the respective impacts of 
atmospheric variability and oceanic CIV 
on OHC at various depths, and discuss 
whether CIV may impact the detection 
and attribution of thermal signals in the 
ocean at various spatiotemporal scales.

LF ocean variability is strong and 
chaotic when isolated from LF forcing 
(i.e., under climatological forcing). Does 
it remain as chaotic when forced by a full 
reanalysis, or is it likely to be paced by the 
LF variability of the forcing? Can the CIV 
and the forced variability be disentan-
gled, and what are their respective mag-
nitudes? In the following, we describe 
the ensemble modeling approach that 
we designed to address these issues, and 
present the insight it provides about the 
forced and the chaotic OHC variabilities.

A LARGE ENSEMBLE OF GLOBAL 
OCEAN SIMULATIONS
We mentioned above that ensemble sim-
ulations allow climate modelers to simu-
late, then separate, the externally forced 
variability (due to, for example, GHGs) 
and the internally generated variabil-
ity of the coupled ocean-atmosphere 

system. The OceaniC Chaos – ImPacts, 
strUcture, predicTability (OCCIPUT) 
project adopted an equivalent, but ocean-​
focused, strategy to disentangle the exter-
nally forced ocean variability (due to 
atmospheric variability) and its internally 
generated variability (CIV). In practice, 
we perturbed the initial states of 50 global 
ocean/sea ice simulations that admit a 
portion of the turbulent regime (1/4° res-
olution), and forced them for 56 years 
(1960–2015) using the same full forcing5. 
Figure 4 in Bessières et al. (2017) shows, 
in two regions, the time series of the 
ensemble dispersion typical of a chaotic 
system: initial inter-member differences 
emerge at the mesoscale, grow exponen-
tially during a few months (in strong CIV 
areas) or a few years (in weak CIV areas), 
then saturate and fluctuate around an 
equilibrium value. Such ensemble sim-
ulations produce time-varying ensem-
ble probability density functions (ePDFs) 
of any given model variable (e.g.,  three-​
dimensional temperature) or diagnos-
tic quantity (e.g.,  OHC). Such ePDFs 
may be computed online to character-
ize the instantaneous spread among the 
ensemble members, or offline from post-​
processed, larger-scale fields, such as 
temporal and/or spatial averages, or long-
term OHC trends. 

The left panel in Figure 2 shows the 
instantaneous ePDF of a temperature 
profile in the North Atlantic subtrop-
ics on June 1, 2014, built online from 
the 50 members, at the same location 
and instant as an Argo observation (red 
lines). The width of this instantaneous 
ePDF is about 5°C in the uppermost lay-
ers, reaches about 8°C at the thermo-
cline depth (700–800 m), and is smaller 
below. The observed profile falls within 
the model ePDF at most depths, illus-
trating the model skill at this date and 
location. This model-derived ePDF rep-
resents the representativity uncertainty 
associated with the oceanic CIV for this 
particular profile. 

5	The OCCIPUT project, the simulation strategy, and our ensemble version of the NEMO model are presented in Penduff et  al. (2014), Bessières et  al. (2017), and on 
https://meom-group.github.io/projects/occiput.

FIGURE 2. Vertical profiles of temperature at 70°W, 36.2°N from various data sets. (a) Argo float 
observations on June 1, 2014 (red), and instantaneous ensemble probability density function (ePDF) 
in the OceaniC Chaos – ImPacts, strUcture, predicTability (OCCIPUT) ensemble at the same time 
and location (gray and black). (b) ePDFs of the 2014 annual-mean temperature in the OCCIPUT 
ensemble (gray and black), and Argo-based annual-mean temperature and associated uncertainty 
(red, ISAS annual climatology). 

(b)  Annual Mean (2014)(a) June 1, 2014, 05:44  
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https://meom-group.github.io/projects/occiput
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The right panel in Figure 2 shows at the 
same location that the width of the ePDF 
of the annually averaged simulated tem-
perature is also pronounced, in particu-
lar around the model thermocline depth6 
where it is about 5°C. As expected indeed, 
the CIV has reached longer time scales 
during the 55 years of integration. In con-
trast to laminar ocean simulations where 
the variability is largely determined by 
the atmospheric variability, the CIV pro-
duced by high-resolution ocean models 
induces large thermal uncertainties, both 
instantaneously and at longer timescales.

Figure 2 illustrates the complexity of 
the CIV, with several non-Gaussian ePDF 
and hints of bimodality. Simple statis-
tics can nevertheless provide interest-
ing insight into model behavior: on the 
one hand, ensemble standard deviations 
(eSTDs) may be computed for any ePDF 
at any time, and these eSTDs can then be 
combined in time to estimate the CIV 
amplitude, or chaotic variability, σC. On 
the other hand, the temporal evolution 
of ensemble mean captures the variabil-
ity that is shared by all members (driven 
by the same atmospheric variability): 
the temporal standard deviation of the 
ensemble mean provides an estimate of 
the forced variability, σF

7. Forced and cha-
otic variabilities of OHC are now com-
pared at various timescales.

FORCED AND CHAOTIC LOW-
FREQUENCY VARIABILITIES OF 
OCEAN HEAT CONTENT
Figure 3a,b shows the forced and cha-
otic anomalies of the upper OHC 
(OHC0–700m), averaged over 1997. The 
large 1997–1998 El  Niño signal forced 
by the prescribed atmospheric winds 
has induced a large warming within 
all members in the eastern equatorial 
Pacific throughout 1997 (left panel). 
Superimposed on this forced response, 
each ensemble member generated a cha-
otic OHC0–700m yearly anomaly (shown 
for member 5 in the right panel), with 

three key characteristics: (1) the phase 
of CIV in each member is different and 
independent of the atmosphere, despite 
the same forcing function; (2) while 
dominated by mesoscale eddies within 
the main currents, dominant LF CIV 
features can reach much larger scales 
(more than 1,000 km) in the subtrop-
ics; and (3) LF CIV features may exceed 
the amplitude of their forced counter-
parts, as in the large chaotic “warm pool” 
east of Florida generated by member 5 
throughout 1997.

The chaotic low-frequency variability 
of OHC0–700m remains substantial even 
at larger spatial scales. Figure 3c pres-
ents the time series of yearly OHC0–700m 

integrated over the South Atlantic (10°–
55°S) for each member. Despite the same 
atmospheric forcing applied over all 
members, yearly OHC0–700m values may 
differ by up to 4.1021 J. This chaotic sig-
nal is about half of its forced counter-
part (σC /σF = 0.5), which is large consid-
ering the size of the integration domain. 
This substantial CIV-related uncertainty 
should be kept in mind while interpret-
ing modeled and observed time series.

Figure 4 provides a global quantifica- 
tion of the ratio R = σC /σF over three depth 
ranges, restricted to the interannual- 
to-decadal (2–15 year timescales) vari-
ability of OHC at spatial scales larger 
than 1,000 km. Contours delineate 

FIGURE 3. (a) Ensemble mean (forced part) and (b) ensemble anomaly (chaotic part in member 5) 
of the OHC0–700m yearly anomaly over 1997 (OHC = ocean heat content). (c) Evolution over 1980–
2010 of yearly anomalies of OHC0-700m averaged over the South Atlantic, within the 50 OCCIPUT 
members (gray lines); the ensemble mean and ensemble standard deviation are shown in green.
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6	The upward decrease of the ensemble spread is an artifact of our forcing method; an alternative forcing technique yields a larger surface ensemble spread in temperature 
(see Bessières et al., 2017, page 1,101).

7	The detailed derivation of σC and σF is given in Leroux et al. (2018).
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regions where most of this LF variabil-
ity is chaotic (i.e., where the atmospheric 
variability is a secondary driver of OHC 
fluctuations [R >1]). The largest R values 
in the Northern Hemisphere are found in 
the Kuroshio, the Gulf of Mexico, and the 
Gulf Stream; R also approaches unity in 
the central North Atlantic and in a coastal 
band linking Alaska to Japan. However, 
the absolute R maximum is located in the 
strongly eddying Agulhas retroflection: 
σC exceeds three times σF at all depths 
where the warm Indian waters flowing 
southwestward along Africa partly spill 
into the Atlantic as Agulhas rings, with 
the other part veering eastward and feed-
ing the ACC’s Subtropical Front. This 
maximum is embedded within a much 
wider band that follows the ACC, where 
σC exceeds σF all the way from South 
America to the longitude of New Zealand 
in the upper layer. 

Figure 4 also shows that areas where 
R > 1 grow in size and number with 
increasing depth: below 2,000 m, σC 
exceeds σF all around Antarctica, with 
local maxima of R associated with topo-
graphic features. The subsurface LF OHC 
variability is also mostly chaotic in large 
areas along the equatorward flanks of 
the global ocean’s five subtropical gyres. 
This downward increase of R is cer-
tainly linked with a downward decrease 
in σF, because the atmospheric variability 
mostly impacts the surface. Preliminary 
investigations show that the LF chaotic 
OHC fluctuations are associated with 
two kinds of slow, random fluctuations 
at depth: vertical movements of density 
surfaces, and fluctuations of temperature 
along these surfaces.

Unlike these regional imprints of 
LF CIV, the evolution of the globally inte-
grated OHC0–700m index is almost the 
same among the 50 ensemble members. 
This illustrates the constraint exerted by 
the prescribed atmosphere on the sim-
ulated ocean variability at global scale: 
the CIV randomly advects heat anoma-
lies at regional scales, with no significant 
impact on global OHC.
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FIGURE 4. Ratio R between the chaotic and the forced interannual-to-decadal variabili-
ties (R = σC /σF) of the large-scale OHC (scales larger than 1,000 km): from top to bottom, lay-
ers 0–700 m, 700–2,000 m, and 2,000 m–bottom. All time scales longer than about 15 years 
(hence, the trends) were first removed from the 50-member yearly OHC fields in the three layers 
using the nonparametric LOcal regrESSion (LOESS) method. Adapted from Sérazin et al. (2017)
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DETECTION AND ATTRIBUTION 
OF LONG-TERM OHC TRENDS
Characteristic CIV timescales may, how-
ever, exceed the 2–15 year range con-
sidered above: a long (327-year) cli-
matologically forced turbulent ocean 
simulation was shown to spontaneously 
generate CIV at periods reaching almost 
100 years, with significant imprints on 
large-scale AMOC fluctuations (Grégorio 
et al., 2015) and on SSH trends in areas of 
strong eddy activity (Sérazin et al., 2016). 
Does this very low-frequency CIV influ-
ence OHC as well?

The fingerprint of multidecadal CIV 
can be detected by comparing the ensem-
ble mean (forced part) and eSTD (CIV-
induced part) of long-term OHC trends in 
the OCCIPUT ensemble. After subtract-
ing the spurious model drift, Sérazin et al. 
(2017) derived these two statistics from 
50 maps of large-scale, regional 31-year 
linear trends of OHC computed over 
the period 1980–2010. Figure 5 shows 
in color the forced trend of OHC0–700m, 
masked by pale areas where it cannot be 
unambiguously attributed to the atmo-
spheric evolution, including natural and 
anthropogenic trends. In these regions, 
OHC trends are rather random, due to the 
very low-frequency CIV. These regions 
are roughly located where the CIV was 
found to explain most of the 2–15 year 
OHC variability (Figure 4). The possible 
implications of these results for the mon-
itoring and interpretation of the ocean 
heat content are discussed below.

IMPLICATIONS AND OUTLOOK
Ocean simulations driven by both full 
and climatological reanalysis-based 
atmospheric forcings show that, when 
mesoscale turbulence is (even partly) 
resolved, a strong LF variability spon-
taneously emerges from the ocean. This 
chaotic intrinsic ocean variability is 
largest at mid-latitudes, affects multi-
ple fields, and reaches large spatiotem-
poral scales. The OCCIPUT ensemble 
was designed to disentangle intrinsic and 
atmospherically forced variabilities, and 
assess their impacts on climate-relevant 

oceanic indices. Results show that the 
intrinsic variability remains chaotic 
(hence the CIV acronym) under realis-
tic forcing, is able to compete with, and 
even dominate, the forced variability 
in many regions. It has a strong finger-
print on OHC at all depths, up to mul-
tidecadal and gyre scales. As with any 
simulation, these model results may be 
partly biased and should be interpreted 
with care. Nevertheless, they have vari-
ous implications. In the following we dis-
cuss those concerning the detection and 
attribution of observed signals, and com-
ment on the role of the turbulent ocean in 
the climate system.

Figure 2 illustrates an interesting para-

digm (articulated by Holloway, 2004): we 
may consider that any individual in situ 
or satellite measurement samples the oce-
anic state that was randomly picked by 
nature from an ensemble of possibilities. 
The OCCIPUT simulation describes these 
possibilities. If the model has skill, then 
instantaneous ePDFs (e.g., Figure 2a) can 
provide information about the imprint of 
multiscale oceanic “chaos” on each obser-
vation: the wider the ePDF, the stronger 
this imprint, and the less the observation 
is representative of the forced component 
of the ocean state. This information could 
be used, for example, to weight individ-
ual hydrographic profiles when build-
ing gridded products from observations; 

FIGURE 5. Forced linear trend of OHC0–700m over 1980–2010 at scales larger than 1,000 km (col-
ors) from four viewpoints. This forced trend is masked where it is smaller than twice the ensemble 
standard deviation. The spurious model trend was estimated from a climatological simulation and 
removed beforehand. Adapted from Sérazin et al. (2017)
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spatiotemporal variances are sometimes 
used to estimate these weights, but ePDFs 
may be better adapted for this purpose 
because they are available at each loca-
tion and time. Simulated equivalents of 
all hydrographic profiles contained in the 
EN4 database (Good et  al., 2013) were 
extracted online from the 50 members 
during the OCCIPUT simulation. Each 
set of these “ensemble synthetic observa-
tions” is associated with an observed T/S 
profile: it can be used to address the issues 
mentioned above, and to probabilistically 
evaluate the simulation.

These results suggest that the observed 
evolution of regional temperatures 
(e.g., from Argo or CTD data) should be 
interpreted carefully. In certain regions 
(see Figures 4 and 5), the interannual- 
to-decadal variability and 30-year trends 
of regional temperatures could be mostly 
due to the CIV, whose phase is random 
and uncorrelated with that of the atmo-
spheric variability. Figure 5 suggests 
that a 30-year trend measured south of 
Australia, for instance, should not be read-
ily attributed to atmospheric or anthro-
pogenic causes, but may instead have 
a random sign. This uncertainty exists 
regardless of the measurement error; it 
depends on the ocean dynamics. Such an 
ensemble could help reassess the detec-
tion and attribution criteria for observed 
trends and fluctuations (e.g., see Barnett 
et al., 2001), in the presence of mesoscale 
turbulence. Efforts are currently under-
way to evaluate the impact of LF CIV on 
the warming hiatus in the past decades, 
and to try to attenuate the CIV signal in 
observed time series.

Prescribing the atmospheric forcing of 
the ensemble simulation was necessary 
to separate the forced and the chaotic 
oceanic LF variabilities, and to answer 
the questions above, but what might 
the results presented here imply for the 
other components of the climate system? 
Because multidecadal ocean thermal 
variability tends to drive the atmosphere 
(e.g., Gulev et al. 2013), and because the 
largest chaotic LF OHC signals are found 
where air-sea heat fluxes are largest in 

nature, the atmosphere will very likely 
be influenced by oceanic LF CIV in an 
AOGCM that resolves the mesoscale. 
Further work is needed to assess whether 
new atmospheric or coupled LF vari-
ability modes will also emerge in high- 
resolution coupled models, or whether 
the predictability of these modes will be 
affected by CIV. 

Oceanic CIV also yields local differ-
ences in sea ice concentration, thickness, 
and velocity in the marginal ice zone 
among the OCCIPUT members. These 
differences yield distinct air-sea fluxes 
and convective activities in polar regions, 
which are in turn able to increase the 
ensemble spread in subsurface tempera-
tures. The hemispheric integrals of sea 
ice volume are, however, almost identical 
among the members (see discussion in 
Griffies et al., 2009). Finally, recent sim-
ulations indicate that the physical CIV 
induces a substantial low-frequency vari-
ability in the marine biogeochemistry, 
with geographical distributions and mag-
nitudes dependent on the tracer consid-
ered. The oceanic CIV may have further 
impact on other climate system compo-
nents, such as ice shelves or the hydrolog-
ical cycle. Investigations of these possible 
consequences are left for the future.

The robustness of these results will 
have to be confirmed in other models 
at different resolutions. However, they 
demonstrate that low-frequency oceanic 
variability in the presence of mesoscale 
turbulence is no longer a slave to the 
atmosphere or solely due to air-sea cou-
pling: part of it emerges spontaneously 
with a chaotic behavior, impacting many 
oceanic fields, and the ocean heat content 
in particular. The implications of these 
results for the detection and attribution 
of climate signals in the warming ocean 
need to be assessed in more detail. 
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