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FROM THE GUEST EDITORS

	 INTRODUCTION TO THE SPECIAL ISSUE ON 

Sedimentary Processes Building a 
Tropical Delta Yesterday, Today, and Tomorrow: 

The Mekong System
By Charles A. Nittrouer, Julia C. Mullarney, Mead A. Allison,  and Andrea S. Ogston

Landsat 8 image from 
September 18, 2014. Data 
are available from the 
US Geological Survey
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INTRODUCTION
Rivers are Earth’s dominant circulatory 
system. They are responsible for transfer-
ring water, solute, and particulate mate-
rial from high land elevations to deep 
ocean depths, largely in a serial path. 
Numerous environments along the way 
have uniquely defined characteristics 
(e.g., water-surface gradients, flow mech-
anisms, substrate, vegetation, geochem-
istry), and there are an equal number of 
transitions between these environments. 
A series of especially important transi-
tions occurs as a fluvial system reaches sea 
level. The scientific relevance of the pro-
cesses active through this region is that 
they define the change from primarily 
transporting material to primarily depos-
iting it, and do so in especially complex 

settings (e.g.,  deltas) where both terres-
trial and marine mechanisms operate. 
The human relevance is that much of the 
world population lives in these regions 
and depends on food, natural resources, 
and commerce located there.

Of the 30 largest river systems deliv-
ering water to the ocean, eight originate 
on the Himalayan Plateau and transport 
~55% of the fluvial sediment reaching 
the world ocean (Allison et  al., 2017, in 
this issue). Of these eight rivers, the one 
extending to the lowest latitude is the 
Mekong, which enters the ocean in the 
wet tropics. This geographic area has rel-
atively constant heat and humidity, and 
worldwide it receives >50% of the fluvial 
freshwater and >60% of the associated 
sediment entering the ocean (Nittrouer 

et  al., 1995). The Mekong system pres-
ents a special opportunity to understand 
the processes that deliver fluvial material 
from an important source and disperse 
that material into an important sink. The 
Mekong Tropical Delta Study focused 
on the transitions that occur as the river 
load reaches the influence of sea level and 
extends into the coastal ocean.

MEKONG TROPICAL 
DELTA STUDY
For the reasons described above, the 
lower portion of the Mekong system has 
been investigated by a number of previ-
ous studies that focused on a wide range 
of topics: water dynamics (Wolanski 
et  al., 1996, 1998; A.D. Nguyen et  al., 
2008; Noh et al., 2013; Takagi et al., 2014); 

ABSTRACT. River deltas are important for human habitation, 
commerce, food, and natural resources. Most terrestrial 
freshwater, dissolved substances, and suspended sediment 
supplied to the ocean pass through delta distributary channels. 
Transitions are complex as this river discharge moves through 
the serial environments of delta systems: tidal river, estuary, 
shoreline, continental shelf. 

The bulk of Mekong sediment accumulates as a muddy clino-
form deposit on the shallow continental shelf (<20–25 m water 
depth), which forms the foundation over which the subaerial 
delta surface has grown for the past ~8,000 years. The Song Hau 
distributary channel, the target of this investigation, receives 
~40% of the Mekong discharge and transfers the majority of it to 
the adjacent shelf during high flow of the river (July–November). 
Some of the sediment is returned to the channel and to the man-
grove shoreline during low flow of the river (December–April). 
The sediment reentering the channel is mostly mud, deposited 
by estuarine processes, that temporarily buries the channel bed 
and interrupts sand transfer to the coastal ocean.

Trapping of sediment supplied to the shoreline of the island, 
Cu Lao Dung, at the Song Hau mouth, is enhanced by the 
roughness from dense mangrove roots extending above the bed. 
Shoreline progradation is asymmetric with the most rapid sed-
iment accumulation (~5 cm yr–1) in the southwestern portion 
of the island, and the distribution of mangroves is linked to this 
sedimentation pattern. About one-third of Mekong sediment 

discharge accumulates in the shelf clinoform near the mouths 
of the distributary channels, with the greatest accumulation 
rates (>10 cm yr–1) in the relatively steep foreset region. Intense 
landward and southwestward currents transport the other two-
thirds of Mekong discharge during energetic shelf conditions 
(December–April). These sediments create a relatively shallow 
clinoform structure, cause the delta to grow asymmetrically 
toward the southwest, and form the Ca Mau Peninsula.

In the future, these same natural processes will operate under 
different conditions. Construction of many dams within the 
drainage basin (>200 constructed or approved) and the impacts 
of climate change (i.e., alterations in monsoonal conditions) will 
significantly decrease Mekong River discharge. In addition, the 
delta land surface will be flooded due to acceleration of eustatic 
sea level rise and local land subsidence. Together, loss of river 
discharge and rise of local sea level will cause many second-
ary impacts, including erosion of distributary channels, ocean 
shorelines, and the shelf seabed; saltwater intrusion farther into 
the channels, along with transfer of associated estuarine pro-
cesses; and decreased supply of freshwater and solutes, includ-
ing nutrients, to the coastal ocean. The collaborative research 
among international and Vietnamese scientists described in this 
special issue of Oceanography provides an integrated under-
standing of the Mekong Delta system, and could help formulate 
strategies to enhance the resiliency of the system and its ability 
to cope with future impacts.
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groundwater extraction (Erban et  al., 
2014; Minderhoud et al., 2017); sediment 
dynamics (Lu and Siew, 2006; Kummu and 
Varis, 2007; Xue et al., 2011; Wang et al., 
2011; C. Liu et  al., 2013; Bravard et  al., 
2014; Brunier et al., 2014; Kondolf et al., 
2014; Lu et  al., 2014; Manh et  al., 2015; 
Darby et al., 2016; R.J.P. Schmitt et al., in 
press); sea level change (Wassman et al., 
2004; Smajgl et  al., 2015; T.T.X. Nguyen 
and Woodroffe, 2016); shoreline change 
(Thu and Populus, 2007; Tamura et  al., 
2010, 2012a; K. Schmitt et  al., 2013; 
Albers and Schmitt, 2015; Anthony et al., 
2015; Phan et  al., 2015; Besset et  al., 
2016); ocean processes (Schimanski and 
Stattegger, 2005; Tjallingii et al., 2010; 
Xue et al., 2010, 2012; Szczucinski et al., 
2013; Unverricht et al., 2013, 2014; Loisel 
et al., 2014; Vinh et al., 2016); and delta 
evolution (V.L. Nguyen et al., 2000, 2005; 
Ta et al., 2002, 2005; Tamura et al., 2009, 
2012b; Hanebuth et  al., 2012; Li et  al., 
in press). The Mekong Tropical Delta 
Study, in contrast, examined the linkages 
among environments in the continuum 
extending from the tidal river (fresh-
water with tidal modulation) to the estu-
arine reaches of delta distributary chan-
nels (with some salinity), and beyond 
to the shorelines dominated by man-
grove forests and to the major sediment 
sink on the continental shelf (Figure  1). 
This coordinated study required the par-
ticipation of many scientists and stu-
dents from Vietnam, the United States, 
New Zealand, and the Netherlands. The 
results are briefly introduced in this arti-
cle, and more fully presented in the fol-
lowing articles in this special issue.

The goals of the Mekong Tropical 
Delta Study are to understand the mech-
anisms and the deposits associated with 
sedimentary processes that have cre-
ated the Mekong Delta over the past 
~8,000 years (Tamura et al., 2009) and that 
will continue to modify the delta into the 
future. Addressing these goals required: 
investigation of the historical record pre-
served by delta stratigraphy, observation 
of modern processes impacting hydro-
dynamics and sediment dynamics, and 

forward extrapolation of past and pres-
ent processes based on anticipated future 
environmental conditions. The Mekong 
Delta contains numerous distributary 
channels that share the load discharged 
to the ocean (Figure 1). In order to have 
a manageable study domain, the target 
of this investigation was the largest dis-
tributary channel, Song Hau, which car-
ries ~40% of Mekong water and sediment 
discharge (A.D. Nguyen et al., 2008). The 
major coordinated study was preceded 
by preliminary measurements during 
2012–2013 (Nowacki et al., 2015), which 
provided knowledge of environmen-
tal and logistical concerns regarding the 
Song Hau and allowed design of the more 
intense study in 2014–2015.

The numerous environmental factors 
that impact the Mekong Delta vary on 
time scales intrinsic to those factors. For 
hydrodynamics and sediment dynamics, 
the most important temporal variabili-
ties occur with seasonal and tidal period-
icities. The discharge of the river reaches 
a peak that propagates downstream 
between July and November (Figure  1). 
Because of its location in the wet tropics, 
the Mekong Delta and the adjacent ocean 
are impacted by monsoonal variations: 
weak winds, waves, and currents toward 
the northeast prevail during the period 
of peak river discharge, and conditions 
switch to energetic winds, waves, and 
currents toward the southwest during the 
period of low discharge from December 
to April (Figure  1). Tidal forcing with 
semidiurnal and fortnightly periods is 
superimposed on these seasonal fluctu-
ations. The Mekong Delta is mesotidal, 
with a range of 3–4 m during spring 
tides, and these fluctuations cause strong 
tidal currents that are coupled with other 
ambient forces (e.g.,  river flow, ocean 
waves, and shelf circulation).

In order to resolve seasonal and tidal 
variations in hydrodynamics and sedi-
ment dynamics, two intense field cam-
paigns were undertaken with two-week 
durations during September–October 
2014 and March–April 2015. The field-
work areas (Figure  1) included: ~90 km 

of the lower Song Hau below the city of 
Can Tho (Figure 2); the mangrove forest 
on the ocean shoreline of Cu Lao Dung, 
an island that causes the Song Hau to 
bifurcate at its mouth (Figure  3); and 
the continental shelf seaward of the 
Song Hau mouth (Figure  4). In addi-
tion, these same regions were examined 
during the same periods by collaborative 
efforts using remote sensing and numer-
ical modeling. Together, these research 
programs shed new light on sedimen-
tary processes building the Mekong Delta 
in the past, present, and future. For each 
of these three time frames, the contribu-
tions from the Mekong Tropical Delta 
Study are highlighted below.

THE MEKONG DELTA DURING 
THE PAST 8,000 YEARS
Starting ~20,000 years ago, global 
(i.e., eustatic) sea level began to rise rap-
idly and continued until ~8,000 years ago, 
when rates of rise slowed to ~2 mm yr–1, 
allowing many rivers to begin building 
their deltas (Stanley and Warne, 1994). 
This Holocene sea level rise caused trans-
gression of the shoreline (landward 
movement). As the shoreline migrated 
landward, the sandy deposits (parti-
cle size >63 µm) of beach and nearshore 
environments created relatively coarse 
surfaces on newly formed continen-
tal shelves. When deltas began to form, 
shoreline regression (seaward move-
ment) resulted as river sediment accu-
mulated over the transgressive sand sur-
face. Fluvial sediment discharged to the 
ocean is predominantly muddy (parti-
cle size <63 µm); the sediments moving 
through the Song Hau are >70% mud 
(Wolanksi et al., 1996). So, delta sedimen-
tation accumulates mostly mud above the 
basal sand layer. Delta growth also creates 
a surface veneer of shoreline and channel 
sands atop the muddy deposits.

Studies of these strata within the 
Mekong Delta (e.g.,  V.L. Nguyen et  al., 
2000; Ta et al., 2002; Hanebuth et al., 2012; 
Tamura et al., 2012a, 2012b) demonstrate 
that regression intensified ~5,000 years 
ago and that the control of sedimentation 
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changed ~3,000 years ago from tidal pro-
cesses alone to mixed tides and surface 
waves. The ancient rate of sediment dis-
charge by the Mekong River is difficult 
to evaluate, but estimates made before 
dam construction indicated a discharge 
of ~160 Mt yr–1 (Milliman and Meade, 
1983). Sediment accumulation has built 
the Mekong Delta ~220 km seaward and 
formed ~50,000 km2 of subaerial surface 
(Liu et al., 2017, in this issue). The shore-
line extends for >300 km along the front 
of the delta, which has grown asymmetri-
cally southward and created the Ca Mau 
Peninsula (Figure 1).

The Mekong Tropical Delta Study’s 
primary contribution to the under-
standing of delta stratigraphy and his-
tory concerns the formation of interior 
mud deposits on time scales of centuries 
and millennia (DeMaster et al., in press; 
Eidam et al., in press; J.P. Liu et al., 2017, 
in this issue; J.P. Liu et al., in press). These 
deposits comprise the dominant mass 
of the delta structure, the foundation on 
which its subaerial surface is built. Most 
sediment accumulation occurs below 
sea level and creates a feature known as 
a clinoform (Figure  4), a deposit with a 
sigmoidal shape in the across-shelf direc-
tion. Ocean waves and currents intensely 
rework a shallow topset region, inhibit-
ing sediment accumulation. The dom-
inant flux of sediment into the seabed 
occurs farther seaward in the foreset 
region, where relatively steeply dipping 
strata build rapidly upward and sea-
ward. The boundary between the topset 
and foreset regions is known as the roll-
over point (Figure 4). At the base of the 
foreset, clinoforms commonly have thin 
bottomset deposits overlying the basal 
sand layer that predates delta growth. 
The topset also can be sandy, but other-
wise the Mekong clinoform is dominantly 
composed of mud (Eidam et al., in press).

Detailed seismic surveys of the Mekong 
subaqueous delta (J.P. Liu et al., 2017, in 
this issue; J.P. Liu et al., in press) reveal a 
clinoform with a rollover depth of 4–6 m 
and bottomset deposits ~20  m deep; 
therefore, many of the foreset deposits 

are ~15 m thick. Coring into the foreset 
region indicates that the grain size is >75% 
mud with porosity ~0.6 (DeMaster et al., 
in press; Eidam et al., in press; Nittrouer 
et al., 2017, in this issue). The character of 
the clinoform changes along the delta and 
around the Ca Mau Peninsula, with the 
base of the foreset deepening to ~25 m 
southward and into the Gulf of Thailand, 
and thicknesses increasing to >20 m. An 
inventory of clinoform sediment indi-
cates that about one-third has accumu-
lated off the mouths of Mekong distrib-
utary channels, and the other two-thirds 
have accumulated southward toward 
the Ca Mau Peninsula and around it 
into the Gulf of Thailand (J.P. Liu et  al., 
2017, in this issue; J.P. Liu et al., in press). 

Assuming an age at the base of the clino-
form deposits of ~1,000 years (Ta et  al., 
2002) allows estimation of a sediment 
budget that indicates a mean accumu-
lation of ~120–140 Mt yr–1 for this time 
scale (J.P. Liu et  al., 2017, in this issue; 
J.P. Liu et  al., in press). Sediment accu-
mulation rates for the past century have 
been directly measured from sediment 
cores and are commonly 1–10  cm  yr–1 
(DeMaster et  al., in press; Eidam et  al., 
in press; Nittrouer et  al., 2017, in this 
issue). Observations from these mea-
surements indicate patterns of sedi-
ment flux and mass budgets similar to 
the seismic observations. On both mil-
lennial and centennial time scales, 
total sedimentation in the clinoform 

FIGURE 1. The Mekong Delta and its distributary channels. The Song Hau was the focus of the 
Mekong Tropical Delta Study. The long yellow box from Can Tho to the coast was investigated 
for channel processes. The small box at the seaward end of Cu Lao Dung contains tidal flats and 
a mangrove forest, which were also studied. The seaward portion of the study area was con-
ducted in the yellow box on the inner continental shelf. Many fluvial and marine processes var-
ied on a seasonal monsoon time scale (lower right inset), driven by river discharge (QR) with a 
peak in July–November and by winds demonstrated by peak wave height (Hsig) in December–April. 
From Eidam et al. (in press)
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approximates the pre-dam discharge 
estimate of ~160 Mt  yr–1 (Milliman and 
Meade, 1983). These fluxes have created 
the foundation of the Mekong Delta, 
which is composed of rapidly accumulat-
ing, soft muddy deposits.

THE MEKONG DELTA TODAY
Song Hau Distributary Channel
As the Mekong River approaches sea 
level, marine processes become super-
imposed on purely fluvial conditions, 
affecting its flow (Ogston et al., 2017, in 
this issue; Xing et al., in press). The sea-
ward serial transitions (Figure  2) are: 
(1)  freshwater river with unidirectional 
flow downstream, (2) freshwater tidal 
river with unsteady and then reversing 
flow, (3)  interface zone with flow con-
vergence as estuarine conditions are 
approached, (4) estuary where freshwater 
and saltwater meet and bottom flows 
can be upstream, and (5) marine condi-
tions. In the Mekong system, tidal fluctu-
ations propagate several hundred kilome-
ters upstream, and estuarine circulation 
can extend ~50 km upstream. The loca-
tions of the transitions change with sea-
sonal flow conditions, and to a lesser 
degree with tidal fluctuations. Despite 
the inherent complexities, defining the 
spatial and temporal variabilities of pro-
cesses is critical for understanding how 
muddy and sandy sediment are trans-
ported and exported, and, during some 
conditions, why significant amounts of 
sediment are imported into the Song Hau 
from the ocean.

Although the same hydrodynamic 
transitions described above apply, trans-
fers of mud and sand fractions from the 
Song Hau to the ocean are generally dis-
connected. This is due to differences in 
transport mechanisms (Ogston et  al., 
2017, in this issue). Flocculation (particle 
aggregation), settling, and bed stresses all 
affect muddy particles. In the Song Hau, 
the fine particles reaching the tidal river 
below Can Tho are significantly floccu-
lated before coming into contact with 
saline conditions (McLachlan et  al., in 
press). However, these particles and 

aggregates stay in suspension until they 
reach the interface zone, where near-
bed flow slows and bed stresses decrease. 
These conditions allow settling and depo-
sition within both the interface and the 
estuarine turbidity maximum at the base 
of the salt wedge, whose locations change 
seasonally. During high flow of the river, 
ebb-tidal flows become dominant, and 
the salt wedge is generally displaced 
onto the shelf, where most muddy sedi-
ment is deposited (Nowacki et al., 2015; 
McLachlan et  al., in press). However, 
during low flow of the river, fluvial advec-
tion has minimal importance to net sed-
iment flux, flood-tidal flows dominate, 
and estuarine processes are displaced 
40–50 km into the Song Hau. Muddy 
downstream discharge can be trapped in 
the channel, and muddy sediment resus-
pended on the continental shelf can be 
imported by landward estuarine bot-
tom flows. During low flow, the estuarine 
channel bed is covered with a mud layer 
25–100 cm thick (Allison et al., in press).

In the Song Hau, sandy sediment can 
be transported as bedload, but most 
moves in suspension (Stephens et  al., in 
press). Sand can represent as much as 
5%–20% of the mass in the suspended 
load, but it generally settles during slack 
tidal currents and is eliminated during 
seasonal low flow where mud covers the 
channel bed (lower 40–50 km). In con-
trast, during seasonal high flow of the 
river, bedload transport creates fields of 
sand dunes on ~20% of the channel bed, 
and relict bottom strata are eroded into 
furrows on ~80% of the bed (Allison 
et  al., in press). Additionally, this high-
flow condition is the time when sus-
pended sand can be exported from the 
Song Hau mouth to shallow coastal areas 
(Stephens et al., in press).

Growth of Cu Lao Dung has created 
two subchannels at the mouth of the Song 
Hau: Dinh An on the northeast side and 
Tran De on the southwest side (Figure 2). 
Water flow and sediment transport con-
spire to maintain greater fluxes through 
Dinh An than through Tran De. Dinh An 
dominates sand transport (Stephens et al., 

in press). Tran De, in contrast, exhib-
its a better mixed estuarine regime, has 
a greater fraction of flocculated silt and 
clay, and consequently has more muddy 
sediment deposition (McLachlan et  al., 
in press). The ultimate fate of Tran De 
could be infilling and closure, as observed 
for another Mekong distributary farther 
north, Ba Lai (Tamura et al., 2012b).

Cu Lao Dung Mangrove Shoreline
Beyond the environments of the Song 
Hau distributary channel are the tidal 
flat and mangrove coast of Cu Lao Dung, 
whose seaward growth represents regres-
sion of the shoreline over top of the clino-
form deposit on the adjacent continental 
shelf. This growth also has helped cre-
ate the island that splits the Song Hau 
into the two smaller distributary chan-
nels, Dinh An and Tran De, with dif-
fering hydrodynamics and sediment 
dynamics. Mangroves dominate inter-
tidal vegetation in most tropical settings, 
and several species are found on Cu Lao 
Dung: Sonneratia spp., Aegiceras cornic-
ulatum, and Avicennia marina (Bullock 
et al., in press; Fagherazzi et al., 2017, in 
this issue). Their presence and associ-
ated vegetation (e.g., Nypa fruticans) cre-
ate complex interactions with water flow 
and sediment transport (Bryan et  al., 
in press), a situation that is typical of 
tropical shorelines.

Mangroves have developed root sys-
tems with various structures above bed 
level to address important biotic func-
tions, such as oxygen exchange and salt 
filtration. These roots, called pneumato-
phores, have different shapes commonly 
described as stilt, knee, or pencil depend-
ing on the mangrove species (Mullarney 
et al., 2017, in this issue). The roots radi-
ate away from the base of the tree trunk 
and extend a few tens of centimeters 
above the bed. Individual pneumato-
phores have diameters of a centimeter 
to a few centimeters. The pencil-shaped 
pneumatophores that dominate the Cu 
Lao Dung forest typically exhibit surface 
roughness in the way their bark is formed 
and especially from growth of barnacles 
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(Mullarney et al., 2017, in this issue). The 
pneumatophores are found in dense con-
centrations known as “canopies” that are 
sufficient to impact flow from surface 
waves and tidal currents.

Water flow through pneumatophore 
canopies generates frictional drag forces, 
creating turbulent eddies, slowing flow, 
and rotating its direction (Henderson 
et al., in press; Mullarney et al., in press; 
Norris et  al., in press). Depending on 
the exact pneumatophore concentration 
and the tidal water level, the drag forces 
respond differently (Figure 3). Very dense 
concentrations and high water levels 
can cause enough drag high in the can-
opy that hydrodynamic stresses may not 
reach the bed. In contrast, sparser dis-
tribution of pneumatophores and lower 
water levels may entrain turbulence 
downward, accentuating bed stress and 

causing erosion. When mangroves are 
located at the mouth of a turbid river, 
sediment becomes an added factor that 
can variously be deposited or eroded by 
the processes described above, and can be 
sorted by grain size. Each of these sedi-
mentary processes has feedback to the 
health of the pneumatophores and conse-
quently the mangroves (Fagherazzi et al., 
2017, in this issue; Mullarney et al., 2017, 
in this issue).

Sedimentary processes impact man-
groves from birth to death. In the 
Cu Lao Dung forest, mangrove seed-
lings are common in stable sand sub-
strates, and are uncommon where eas-
ily erodible mud substrates are found 
(Bullock et al., in press; Fagherazzi et al., 
2017, in this issue). The dominant man-
grove, Sonneratia spp., and its pneu-
matophore canopy are very effective at 

trapping sediment, thereby raising bed 
level and smothering the mangrove’s 
roots, ultimately leading to their demise. 
However, Sonneratia mangroves continue 
to thrive, as new trees grow farther sea-
ward in more suitable conditions. The 
old locations have higher elevations with 
decreased water immersion times, creat-
ing conditions ideal for the other types 
of mangroves and leading to species suc-
cession and zonation (Figure  3; Nardin 
et  al., 2016; Fagherazzi et  al., 2017, in 
this issue). Consistent with these obser-
vations, sedimentary characteristics 
demonstrate landward trends. The fric-
tional drag beginning at the mangrove 
fringe causes bottom stresses to decrease 
progressively into the forest, bed grain 
sizes to become finer (from sand domi-
nant to mud dominant), and accumula-
tion rates to increase (from ~3 cm yr–1 to 
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~5 cm yr–1; Mullarney et al., 2017, in this 
issue; Fricke et al., in press).

The driving forces for hydrodynamics 
and sediment dynamics are not equally 
distributed in space and time along the 
Cu Lao Dung shoreline. The two ends 
of the shoreline border Dinh An and 
Tran De subchannels, with differing flow 
and sediment characteristics. In addition, 
the ocean waves and currents approach 
from different directions, with different 
intensities, during different seasonal con-
ditions. Consequently, sedimentation is 
neither uniform nor steady (Fricke et al., 
in press). The southwest end of the Cu 
Lao Dung shoreline receives the great-
est wave energy, creating a sandy sub-
strate on the tidal flat. However, muddy 
sediment transport converges in this area 

and causes the greatest sediment accu-
mulation rates, >5 cm yr–1 within the for-
est (Fricke et al., in press). The northeast 
end of the shoreline is more quiescent 
and sediment fluxes into the mangrove 
forest are weak, so accumulation rates 
are <3  cm  yr–1. The result is asymmet-
ric growth of the tidal flat and shore-
line, as the southwest end progrades 
more rapidly, at mean rates ~80 m yr–1 
for the past 35 years, as indicated by sat-
ellite observations (Fricke et al., in press; 
Wackerman et al., in press). Contrary to 
expectations, the primary supply of sed-
iment to the tidal flats and mangrove 
shoreline is not during high flow of the 
Mekong River (July–November). Most 
sediment flux to the Cu Lao Dung coast 
occurs during the period of river low 

flow (December–April), and the supply 
comes from the adjacent continental shelf 
(Fricke et al., in press).

Mekong Inner Continental Shelf
The dominant sink for Mekong sedi-
ment is the clinoform structure found in 
water depths of <20–25 m on the adja-
cent continental shelf. This observation 
is also typical of other large river sys-
tems (e.g., Amazon, Changjiang, Ganges-
Brahmaputra), where the greatest rates of 
sediment accumulation within the clino-
form are found on the foreset region 
(Nittrouer et  al., 2017, in this issue). 
Extensive studies of the Mekong clino-
form find such an across-shelf trend 
(DeMaster et al., in press; Eidam et al., in 
press). Accumulation rates reach values 
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approaching and exceeding 10 cm yr–1 
on the foreset region, and decrease both 
landward and seaward (Figure  4). This 
pattern leads to the sigmoidal shape 
of the clinoform surface, which builds 
upward and seaward. However, there 
is a significant inconsistency regard-
ing the Mekong clinoform, because the 
rollover depth is significantly shallower 
(4–6 m depth) than those of other large 
river systems (20–40 m depth; Nittrouer 
et al., 2017, in this issue; Eidam et al., in 
press). The cause of the shallow rollover 
is linked to the hydrodynamic and sed-
iment dynamic processes operating on 
the Mekong shelf.

A distinct characteristic of the Mekong 
River and shelf is the lack of coherence in 
timing for the peak river discharge (July–
November) and peak ocean energetics 
(December–April). Most Mekong sed-
iment is discharged to the ocean when 

surface waves are small and ocean cur-
rents are weakly directed toward the 
northeast. Sediment is deposited on the 
shelf near the mouth of the Song Hau 
and at the mouths of other Mekong dis-
tributary channels (Nittrouer et  al., 
2017, in this issue). Some of the sedi-
ment remains to accumulate and create 
the northern portion of the clinoform, 
with about one-third of the discharged 
sediment (DeMaster et  al., in press; Liu 
et  al., in press). The rest is resuspended 
by the more energetic waves and currents 
during December–April, and transported 
landward and southwestward (Eidam 
et al., in press; Thanh et al., in press). The 
intense landward transport constrains 
Mekong sediment near the coast, keep-
ing rollover depths shallow (Eidam et al., 
in press) and providing suspended sed-
iment to mangrove forests and distrib-
utary channel mouths (Fricke et  al., in 

press; McLachlan et al., in press). In the 
latter case, low-flow conditions in chan-
nels are periods of flood-dominant tidal 
currents and landward estuarine bottom 
currents. Together, these flows can trans-
port the resuspended shelf sediment far 
into the channels, 40–50 km for the Song 
Hau (Nowacki et  al., 2015; McLachlan 
et  al., in press). The intense southwest-
ward shelf transport moves the remain-
ing two-thirds of the discharged sediment 
and has caused the delta to grow in that 
direction, forming the Ca Mau Peninsula 
(Liu et al., 2017, in this issue; DeMaster 
et al., in press; Liu et al., in press).

Many chemical components are 
released by land-surface weathering and 
erosion, and are carried by river water 
to the ocean. Some remain dissolved 
in freshwater while others (e.g.,  Fe, 
organic  C) can be adsorbed to the sur-
faces of sediment particles and follow the 
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paths of those particles to and through 
the ocean. Additional dissolved chem-
ical components are found in ocean 
water, which is drawn to the mouths of 
distributary channels by estuarine cir-
culation (DeMaster et  al., in press). If 
these components are capable of parti-
cle adsorption, they will be scavenged 
by the turbid coastal waters and follow 
the paths of the particles. The Mekong 
freshwater discharge causes a landward 
flow of ocean water that is twice the vol-
ume of that freshwater (DeMaster et al., 
in press). Many oceanic chemical solutes 
are adsorbed and buried with the sedi-
ments in the clinoform deposit; others 
(e.g., N, P) can help stimulate the intense 
productivity of deltaic waters, and the 
resulting organic matter is buried. The 
large flux of fluvial effluent can have com-
plex interactions with the adjacent ocean.

THE MEKONG DELTA 
IN THE FUTURE
Natural processes will determine the 
future of the Mekong Delta system, but 
those processes will be operating under 
conditions altered by human actions. 

The source area of the Mekong in the 
Himalayan Plateau and its sink in the 
wet tropics add some special impacts 
to the system, but much of the descrip-
tion below is similar to the fate of other 
major delta systems around the world. It 
is important to recognize that preserva-
tion of a delta system is much less difficult 
(and much less expensive) than its resto-
ration (Allison et al., 2017, in this issue).

The human actions that will impact 
the future of the Mekong Delta are wide 
ranging, but there are two broad causes of 
change, one that originates from the land 
(i.e., river discharge) and the other from 
the ocean (i.e.,  sea level rise). Climate 
change will affect monsoonal conditions 
within the Mekong drainage basin, likely 
reducing precipitation and runoff, thus 
reducing water, solute, and particulate 
supply to the delta system (Darby et  al., 
2016). However, the greatest reduction is 
likely to come from construction of dams 
within the drainage basin that began in 
the early 1990s, with 35 dams completed 
by 2015, and 226 more dams approved 
for construction (Allison et  al., 2017, in 
this issue). Dams reduce discharge and 

alter the timing and character (highs 
and lows) of the hydrograph, and these 
impacts are propagated to the delta and 
ocean beyond. Local sea level rise that 
affects a delta is a combination of eustatic 
rise and land subsidence, both of which 
are accelerating for the Mekong Delta. 
By 2050, eustatic sea level is expected to 
rise by ~30 cm and the land surface is 
expected to sink by ~90 cm (Erban et al., 
2014; Meselhe et al., 2017, this issue). The 
sinking is due to natural compaction of 
the muddy clinoform deposits underly-
ing the subaerial delta surface and to the 
human extraction of fluids. This ~120 cm 
of local sea level rise is significant, because 
the average elevation of the delta surface 
is only ~200 cm (Figure 2).

The impacts of discharge reduction 
could be dramatic, and, for sediment, 
estimates of reduction approach 96% if 
all dams are constructed (Kondolf et al., 
2014). Obviously, the sediment supply 
to the delta and its ocean sink would be 
devastated. Without deposition on the 
continental shelf during high flow of 
the river, the subsequent sediment sup-
ply to the mangrove shoreline would be 
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minimized. Tidal currents, ocean waves, 
and coastal currents would continue to 
operate, and climate change might even 
energize the latter two. Without sufficient 
sediment supply, the distributary chan-
nels, shorelines, and seabed would even-
tually erode. Dam operations that alter 
the timing and character of discharge 
would disrupt the natural balance of sedi-
ment transfer between channel, shelf, and 
back to shoreline. Reduction in water dis-
charge would be similarly devastating, as 
saltwater intrusion would penetrate far-
ther upstream and with it the interface 
and estuarine processes that trap sedi-
ment discharge. Reduction in water dis-
charge would mean less solute transfer 
from land, including important nutri-
ents for primary productivity. Without 
the freshwater, ocean water and its con-
stituents would not be drawn landward 
by estuarine circulation.

The impacts of sea level rise are obvi-
ous. The Mekong Delta is home to mil-
lions of people, and the delta surface 
will become progressively more prone to 
flooding by spring tides and high flow of 
the river, and by shoreline migration land-
ward. The sediment accumulation rates 
documented for the present mangrove 
forest (reaching ~5 cm yr–1) and for the 
shelf clinoform (reaching and exceeding 
10 cm yr–1) are sufficient to maintain sub-
aerial and submarine surfaces, but these 
values will be severely reduced with loss 
of sediment supply. The expected reduc-
tion in bed growth demonstrates the dan-
gerous coupling of damming effects and 
local sea level rise.

Some impacts are already being felt. 
Recent estimates of Mekong sediment dis-
charge (e.g., Nowacki et al., 2015; Darby 
et al., 2016) are half or less than the early 
estimates (160 Mt yr–1; Milliman and 
Meade, 1983). Sedimentation distribution 
along delta shorelines is naturally hetero-
geneous, but recent observations show a 
distinct shift toward slower seaward pro-
gradation in some areas and retreat in 
other areas (Liu et al., 2017, in this issue). 
According to these observations, the 
delta shoreline’s historical progradation 

(~30 m yr–1) slowed during 1973–2005, 
and it became net erosional after that.

What could be done to minimize 
future impacts on the Mekong Delta? 
Some actions are obvious but difficult 
to implement: minimize dams and their 
hydrograph modification, reduce sand 
dredging in distributary channels, limit 
fluid extraction from the delta subsur-
face, and promote mangrove growth 
on shorelines (Allison et  al., 2017, in 
this issue). Other actions are scientifi-
cally based and result from the studies 
described in this article: develop numer-
ical models that can help mitigate future 
impacts; document changes by remote 
sensing; enhance fixed-station monitor-
ing in channels, shorelines, and coastal 
ocean waters; obtain ground truth 
through repetitive field observations 
(Allison et al., 2017, in this issue; Meselhe 
et al., 2017, in this issue).

The future of sedimentary processes 
on the Mekong Delta is uncertain—
but seems ominous. The research 
described in this article and in this spe-
cial issue provides an integrated view of 
those processes operating in distribu-
tary channels, mangrove shorelines, and 
shelf clinoform deposits. Altogether, 
this research promotes development of 
insights to the future of the Mekong and 
other deltas worldwide that will experi-
ence similar fates. 
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