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GoMRI: DEEPWATER HORIZON OIL SPILL AND ECOSYSTEM SCIENCE

What Happened to
All of the Oil?

ABSTRACT. The explosion of 
the Deepwater Horizon platform 

in the Gulf of Mexico in 2010 caused an 
oil spill that was unique in that it originated at 

great depth and persisted for an extended period of 
time, resulting in release of a very large quantity of oil and 

gas into the environment. What happened to all of this oil and gas? 
This paper briefly discusses the various physical, chemical, and biological 

processes that affected the fate and distribution of the spilled petrocarbon: some 
of the spilled oil was directly removed by mitigating measures, some was rapidly 
biodegraded, and some was deposited on the seafloor. Part of what remained entered 
food webs or contaminated shorelines. Consolidation of different estimates of the 
diverse distribution pathways provides a “guesstimate” budget that assesses the fate of 
the spilled petrocarbon after it partitioned between the deep plume and the sea surface. 
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INTRODUCTION
In April 2010, an explosion at the 
Deepwater Horizon (DWH) platform 
in the Gulf of Mexico led to an oil spill 
that was extraordinary in its volume 
(~5,000,000 barrels of oil and 7.7 bil-
lion standard cubic feet of natural gas), 
duration (87 days), and depths of release 
(1,500 m) (McNutt et al., 2012). Estimates 
of oil and gas concentrations and the sizes 
of impacted areas, however, vary widely 
because of the uneven distribution of 
oil compounds in the environment and 
because of the difficulty in sampling 
marine habitats. What happened to all of 
this oil? The chemical complexity of oil, 
which consists of thousands of distinct 
chemical compounds, combined with the 
complexity of the physical, chemical, and 
biological processes that determine the 
fate of the spilled oil and gas, preclude 
a simple answer. Mitigating response 
actions further influenced the oil distri-
bution and had some unintended conse-
quences that altered the fate of the oil. In 
this paper, we provide an overview of the 
main distribution pathways of the spilled 
petroleum and the associated processes 
that influenced their transport and trans-
formation in the marine environment. 

THE EFFECTS OF 
MITIGATING MEASURES 
ON OIL DISTRIBUTION 
Dispersant Addition. A number of 
measures were taken to mitigate the 
effect of the released oil. The dispersant 
Corexit was added both at the leak depth 
and onto the surface slick. Dispersants 
reduce the surface tension of the oil- 
water interface, leading to smaller oil 
droplet sizes and increased dispersion of 
oil in water. At the surface, the addition 
of Corexit reduced the thickness of the oil 
carpet while increasing the affected sur-
face area and the number of oil droplets 
in the upper mixed layer (Garcia-Pineda 
et al., 2013; MacDonald et al., 2015). 

The unprecedented addition of Corexit 
(about 1.84 million gallons) at the source 
of the oil leak at >1,400 m depth also 
appreciably affected the distribution 

and fate of the spilled oil (Kujawinski 
et  al., 2011; Gray et  al., 2014). The dis-
persant increased the fraction of oil that 
was spreading within the water column, 
and the oil that did reach the sea surface 
was displaced laterally, a few kilometers 
from the site of the blowout (Chan et al., 
2015). The primary reason for adding 
dispersants directly to the leak at depth 
was so that responders, required to work 
directly above the wellhead, would be 
less affected by the surface expression 
of the oil (Socolofsky et  al., 2015). The 
decreased droplet size (Zhao et al., 2015) 
and increased fraction of subsurface oil 
was also meant to reduce coastal impacts 
of the surface oil slick, but the success of 
this strategy is controversial (Paris et al., 
2012). Additionally, the reduced drop-
let size due to dispersant addition was 
thought to promote biodegradation of oil, 
but this concept has recently been chal-
lenged based on experiments that show 
Corexit suppresses microbial oil degrada-
tion (Kleindienst et al., 2015). 

Direct Recovery. Efforts to collect oil 
directly at depth at the leak site and to 
remove oil from the surface, either by 
skimming or via in situ burns, removed 
about 25% of all petroleum spilled (Lehr 
et al., 2010; Lubchenco et al., 2012). In 
situ burning via more than 400 fires, 
while removing oil, aerosolized some 
oil compounds and added burn residue, 
including char and soot, to the water. 
Some burn residue is heavier than sea-
water, so it sinks directly near the site 
of its production. Char and soot parti-
cles, however, may linger in the water for 
months until collected by sinking marine 
snow (Yan et al., 2016).

Opening of Diversionary Channels. 
The release of water from diversionary 
channels of the Mississippi River, meant 
to prevent oil from entering Louisiana 
marshes, appeared to keep oil out of 
the areas where freshwater was released 
(Bianchi et al., 2011). However, this water 
release also led to additional input of nutri-
ents and clay, which may have, directly 

and indirectly, increased sedimentation 
of oily marine snow in, for example, the 
DeSoto Canyon area (Brooks et al., 2015). 

Addition of Drilling Mud. Drilling mud, 
a dense fluid, was pumped into the well-
head in unsuccessful attempts to stop the 
leak. Drilling mud is heavy and sinks rap-
idly, taking oil along with it in the form of 
a sediment-oil suspension. The footprint 
of this event was restricted to a circle of 
about 6–7 km diameter around the leak 
site (NRDA, 2015), although fine drilling 
mud residue was found to be transported 
much farther (Yan et al., 2016). 

PHYSICOCHEMICAL 
DISTRIBUTION PATHWAYS
The different compounds of the Macondo 
crude oil partitioned in the environment 
depending on their specific characteris-
tics (Socolofsky et al., 2016, in this issue): 
gas and lighter compounds preferentially 
evaporated or dissolved, whereas the 
heavier compounds remained behind, 
transported and modified by currents 
at many different scales (see Box  1; 
Figure  1). Associations with biogenic 
particles and suspended minerals fur-
ther impacted the distribution of the dif-
ferent oil compounds. Once released, the 
petroleum formed three distinct features: 
(1) a rising plume between the leak and 
the sea surface, (2) a subsurface plume 
(or intrusion layer) at about 1,100 m 
depth, and (3) a massive oil slick at the 
surface (Thibodeaux et al., 2011).

Rising Plume. A buoyant plume com-
posed of oil and gas, and the added 
Corexit, formed above the riser pipe leak. 
The turbulent plume entrained back-
ground ocean water that included organ-
isms and organic matter as it rose. Within 
the plume, the behavior of the released 
petrocarbons was affected by the spe-
cific physicochemical properties of the 
individual compounds and by marine 
particles and environmental conditions 
(e.g.,  pressure, temperature, turbulence). 
Physicochemical partitioning due to 
pressure or temperature changes during 
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Box 1. Key Concept: Physical Transport of Oil 

Currents transport and modify oil at many different scales. At the smallest scales (milli-
meters to meters), energetic turbulent motions near the wellhead can break a body of 
oil into droplets. This process is complex, as oil and gas mixtures within the water will 
rise and generate their own turbulent wakes, creating feedback between the oil and 
gas droplets and the turbulence. At slightly larger scales (a few meters to a kilometer) 
near the wellhead, an expanding vertical plume will bring oil and gas toward the surface, 
entraining background water to balance mass within the expanding plume. Because the 
entrained water may be denser than the water above, the plume may reach a level of 
neutral buoyancy. At this point, a subsurface intrusion layer may form. At even larger 
scales (hundreds of meters to a few kilometers) larger “submesoscale” turbulence may 
help to disperse the plume. The submesoscale turbulence is strongest in the ocean’s sur-
face mixed layer, within the upper 10–50 m, and strongly influences any surface oil slick. 
These flow features cause the “swirls” seen in satellite images of surface oil slicks and 
have the effect of spreading the slick out over a broader region than would otherwise be 
affected. At the largest scales (tens to hundreds of kilometers), mesoscale circulation fea-
tures transport the oil. These circulation features are typically strongest near the surface 
and the bottom of the water column, and generally follow bathymetric features. 
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ascent, and biological activity, all changed 
the properties of the rising oil plume. 
While rising, the plume spread laterally 
due to mixing and entrainment, forming a 
cone, but remained predominantly within 
a 1–2 km radius around the leak (Ryerson 
et  al., 2012). Roughly one-half of the oil 
and gas from this rising plume was par-
titioned into a deep, subsurface intrusion 
layer; the rest rose to the sea surface.

Deep Intrusion Layer or Deep Plume. 
The deep intrusion layer formed pre-
dominately between 1,000 m and 
1,400 m depth, where the mixture of 
buoyant petrocarbons and entrained, 
denser seawater became neutrally buoy-
ant (Socolofsky et  al., 2011). About 50% 
of the total discharged petroleum, includ-
ing most soluble petrocarbons as well as 
small oil droplets, were trapped within 

the intrusion layer (Diercks et  al., 2010; 
Reddy et  al., 2011; Ryerson et  al., 2012; 
Spier et al., 2013). 

Diffuse subsurface plumes of oil com-
pounds were also observed at other depths, 
for example, at 400 m, but were less pro-
nounced. Physical transport of the sub-
surface plumes differed from those at the 
surface, with currents moving the main 
intrusion layer at ~1,100 m up to 400 km 
to the southwest (Spier et  al., 2013). Oil 
trapped in the deep plume was too deep to 
reach nearshore habitats, but ran aground 
when encountering upsloping seafloor, 
where it infiltrated the sediments and 
left a contaminated layer analogous to a 
dirty bathtub ring (Hastings et  al., 2014; 
Romero et al., 2015). 

Surface Oil Slick. About half of the 
spilled oil and gas reached the sea surface, 
creating a large oil slick. About 14% of the 
oil compounds that reached the surface 
evaporated from the surface slick within 
hours to days (Ryerson et al., 2012). The 
footprint of the surface slick continuously 
changed in size and location (MacDonald 
et  al., 2015), as physical processes on 

FIGURE 1. Schematic 
of various physical 

processes that were 
responsible for trans-

porting and modify-
ing oil and gas released 

from the Deepwater 
Horizon wellhead.
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scales from millimeters to hundreds of 
kilometers impacted the distribution of 
the oil (Reed et al., 1999). The cumulative 
area where oil was detected via synthetic 
aperture radar (SAR) imaginary was 
about 112,115 km2. This area represents 
an upper estimate of the area where oil 
could have sedimented to the seafloor 
and organisms could have been impacted 
directly. The average area covered with oil 
on any day during the spill was an order 
of magnitude smaller (White et al., 2016, 
in this issue). Wind and surface currents 
continuously moved the oil slick and 
pushed a large fraction of it toward the 
coast along the northern Gulf of Mexico 
(Le Hénaff et al., 2012). Özgökman et al. 
(2016, in this issue) discuss in more detail 
the different physical processes that trans-
ported the oil on the sea surface. 

Mixing and wave action (Delvigne and 
Sweeney, 1988; Johansen et  al., 2015), 
combined with the airborne release 
of Corexit onto the slicks, led to the 
re-entrainment of small but biologically 
significant amounts of oil into the upper 
mixed layer, down to ≥20 m. The fate of 
this water-accommodated fraction of oil 
differed from that of the oil slick itself, 
but it is difficult to track. Although phys-
ical and chemical dispersion and dilution 
of oil in the water column as well as bio-
degradation resulted in low concentra-
tions of oil by the time the spill ended in 
mid-July, some fraction of the oil lingered 
in the water for many months after the 
leak was sealed, as inferred from its con-
tinued sedimentation for months there-
after (Yan et al., 2016). 

OIL REACHING NEARSHORE 
HABITATS 
Wind and currents transported surface 
slicks into nearshore environments where 
they affected more than 1,800 km of shore-
line and predominantly contaminated 
marshes (45% of the impacted shoreline) 
and beaches (51% of the impacted shore-
line; Michel et al., 2013; Stout et al., 2016). 
Oiling was categorized as moderate to 
heavy for 33% of this affected coastline. 
Before reaching these coastal ecosystems, 

the oil had traveled 80–100 km on the sea 
surface and was heavily weathered. Mostly 
it stranded in a thick viscous emulsion. 
Specifically, oil made landfall around the 
Mississippi delta and along the Mississippi 
and Alabama coastlines (Le Hénaff et al., 
2012). At sandy beaches or marsh soils, 
oil enters the pore water, seeping into 
cracks and holes, and making it nearly 
impossible to estimate the total amount 
of oil hidden in these shallow environ-
ments (Mendelssohn et al., 2012). In sub-
tidal habitats, oil mixed with sediment 
may form a viscous emulsion that sticks 
to mud, sand, plants, animals, and rocks. 
Some of the oil washed up on beaches as 
tar balls, patties, or oil mats. The ultimate 
fate of petroleum reaching the shoreline is 
largely degradation, either by photochem-
ical processes or due to microbial activ-
ity of bacteria and fungi (Joye et al., 2014). 
The supply of oxygen and nutrients prob-
ably controlled the microbial degradation 
of oil that reached shore. Oil that washed 
ashore also entered the terrestrial eco-
systems and food webs (Cornwall, 2015). 

Cleanup efforts removed oil on 73% 
of oiled beaches, but natural recovery 
was deemed less damaging than inva-
sive cleanup procedures for most oiled 
marshes (Michel et  al., 2013). Despite 

cleanup and natural weathering pro-
cesses, some oil persisted for years, and 
was remobilized and redistributed during 
storms (Dalyander et al., 2014). After two 
years, 39% of oiled beaches were still con-
taminated (Michel et al., 2013). 

OIL IN THE OPEN OCEAN: 
PLANKTON-OIL INTERACTIONS 
Organisms encountering oil in the var-
ious affected ecosystems were not only 
impacted by the oil (Buskey et al., 2016, 
in this issue) but also directly influ-
enced its distribution and fate (Figure 2). 
Degradation of oil compounds by bacte-
ria is best understood, but petroleum also 
entered and resided in food webs, and 
was packaged into sinking marine snow. 

Microbial Degradation of Oil. Certain 
bacteria can degrade specific compounds 
of oil and natural gas, effectively remov-
ing or altering them (Joye et  al., 2016, 
in this issue). The microbial response 
to the spill changed the abundance and 
composition of bacteria at the surface, 
in the deep plume, and at the seafloor 
(Yang et  al., 2012), indicating that oil 
was degraded in all habitats. In the deep 
plume, increased respiration due to ele-
vated bacterial activity resulted in a small 

Box 2. Key Terms
BIODEGRADATION: Microorganisms utilize oil as a source of energy, generating new 

organic compounds or CO2 in the process.
BIOTURBATION: Reworking and mixing of sediments by benthic organisms.
COREXIT: A dispersant that reduces the surface tension between oil and water and 

promotes the formation of tiny oil droplets that scatter in water rather than forming a 
surface oil film. 

Dispersion of oil: The distribution of oil droplets into the water, for example, by wave 
action or with the aid of dispersants. 

DISSOLUTION: Water-soluble compounds of oil dissolve in water.
EMULSIFICATION OF OIL: Formation of a mousse that consists of tiny oil droplets 

within water.
EVAPORATE: Release into the air, as for example, the volatile fraction of oil.
FLOC: Loose layer of material on the seafloor, formed by settled marine snow. 
MARINE SNOW: Large (> 0.5 mm) composite particles that sink to the ocean floor. 

(Oil-containing marine snow is termed marine oil snow or MOS.)
OIL: A liquid consisting of tens of thousands of chemically distinct compounds, each with 

different physical-chemical properties that influence its behavior and fate.
PHOTOOXIDATION: A sunlight-induced process where oxygen reacts with the oil, 

changing it chemically.
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but detectable oxygen deficit, reflect-
ing the rapid (days to weeks) removal of 
the more bioavailable compounds of the 
spilled oil and gas (Camilli et  al., 2010; 
Hazen et al., 2010; Valentine et al., 2010; 
Joye et al., 2011; Kessler et al., 2011). Net 
degradation in the surface layer could 
not be quantified the same way, because 
at the surface, utilized oxygen is rapidly 
replenished from the atmosphere. As the 
oil compounds that formed the surface 
slick were less bioavailable than those in 
the intrusion layer, and because nutri-
ent limitation in surface waters inhibited 
microbial degradation, it is assumed that 
microbial degradation of the surface slick 
was slower, although photodegradation 
of oil at the surface may have increased its 
bioavailability. Additionally, the forma-
tion of cooperative biodegradation net-
works within microbial oil snow allowed, 

similar to biofilms, the efficient degra-
dation of oil from the surface via close 
interactions between different microbes. 
The quantitative importance of this pro-
cess still awaits exploration (Joye et  al., 
2014; Passow and Ziervogel, 2016, in this 
issue). Oil-degrading bacteria also thrive 
in some copepod fecal pellets, so cope-
pods feeding on oil products may also 
contribute to the degradation of petro-
leum (Størdal et al., 2015).

Incorporation of Oil into Food Webs. 
The bacterial blooms resulting from the 
DWH spill led to increased grazer pop-
ulations that efficiently moved oil- and 
methane-derived carbon into the plank-
tonic food web (Graham et  al., 2010; 
Chanton et  al., 2012; Cherrier et  al., 
2013). Fossil carbon from the Macondo 
oil may be tracked because its isotopic 

signal differs from that of modern marine 
organic carbon. When zooplankton or 
nekton take up oil (Lee et al., 2012; Mitra 
et  al., 2012), specific petrocarbons bio-
accumulate (Almeda et al., 2013a,b), par-
titioning preferentially into lipid-rich 
tissue, and persisting within organisms 
(Meador, 2003). Organisms ingest oil 
compounds, either directly as oil drop-
lets or inadvertently via oil-coated food 
particles, or via respiratory surfaces. Oil 
compounds or signs of their presence 
were found in animals from all exposed 
habitats and at all levels of the food web 
(Cornwall, 2015). Although the fraction 
of the spilled oil that bioaccumulated in 
organisms is presumably small, its effect 
is disproportionately large due to the 
toxic and mutagenic properties of some 
of these substances (Paul et  al., 2013; 
Garr et al., 2014).

FIGURE 2. Depiction of biologically mediated oil distribution pathways during the Deepwater Horizon spill. Oil that stranded along coastlines 
was incorporated into ecosystems there, and oil that floated at the sea surface or in the deep plume interacted with plankton and mineral parti-
cles in the water column. Microbial degradation removed oil compounds in all habitats. Marine oil snow (MOS) formation transported petrocarbon 
to the seafloor, at times collecting oil during transit through the subsurface plume. In the presence of minerals, near the shelf slope, for example, 
oil-mineral aggregations may have formed, also leading to the settling of petrocarbon. Organisms from all habitats incorporated oil. Riverine efflu-
ent, as well as in situ burning further impacted oil fate. 
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Marine Oil Snow Formation and 
Sedimentation. Large phytoplankton 
aggregation events and zooplankton or 
bacterial activity may lead to the forma-
tion of oily marine snow, termed marine 
oil snow (MOS; Passow and Ziervogel, 
2016, in this issue). Phytoplankton aggre-
gates, consisting of diatoms or the cyano-
bacteria Trichodesmium, which are both 
common in the Gulf of Mexico, may 
incorporate significant amounts of petro-
leum either during their formation, 
or later while sinking through oil-rich 
plumes. Zooplankton feeding in dilute 
oil suspensions concentrate and repack-
age oil into sinking MOS that consists of 
discarded feeding structures or feces (Lee 
et al., 2012). Deepwater Horizon-derived 
MOS, whether formed from zooplankton 
or bacterial activity or via phytoplankton 
aggregation, sank rapidly (hundreds of 
meters per day), transporting oil toward 
the seafloor (Passow et al., 2012).

DEPOSITION OF OIL ON 
THE SEAFLOOR 
Oil and large amounts of loose floccu-
lent material (called floc) accumulated on 
the seafloor during and after the DWH 
spill (Chanton et  al., 2014; Valentine 
et al., 2014; Brooks et al., 2015; Romero 
et  al., 2015; Yan et  al., 2016). Although 
direct fallout in association with drilling 
mud transported some petroleum in the 
immediate vicinity of the well to depth, 
sinking MOS was the primary cause of 
oily floc deposition. The combination of 
processes leading to MOS formation, sed-
imentation, and deposition at the seafloor 
has been dubbed MOSSFA, for marine oil 
snow sedimentation and flocculent accu-
mulation (Daly et al., 2016). 

Estimates based on oil compounds 
and isotopic signatures of material accu-
mulated at the seafloor suggest that about 
2%–15% of all the spilled petroleum was 
deposited at the seafloor; however, this 
estimate is almost certainly too low, pro-
viding a lower limit only (Passow and 
Ziervogel, 2016, in this issue). 

Upon arrival at the seafloor, MOS cov-
ered corals (White et  al., 2012; Hsing 

et  al., 2013) and formed a 0.5–1.2 cm 
thick, loose layer of floc (Brooks et  al., 
2015). The floc layer caused reduced bio-
turbation and changed sediment redox 
conditions (Hastings et al., 2014; Brooks 
et al., 2015). Natural recovery of benthic 
deep-sea ecosystems after oil deposition 
is thought to be slow, in part because of 
low temperatures. Four years after the 
DWH spill, the Macondo oil footprint on 
the seafloor was still quite extensive, at 
about half of its original size (Montagna 
et al., 2013; Stout et al., 2015). 

BUDGET CONSIDERATIONS
Here, we attempt an overall budget to 
address the question of what happened 
to all the oil. This guesstimate budget 
(Figure  3) consolidates best estimates 
of different physical and biological pro-
cesses governing the fate of the oil. The 
budget is based on a total release of 
5,000,000 barrels of petroleum (oil and 
gas), as derived by McNutt et al. (2012); 
the partitioning of oil and gas among 
evaporated, dissolved, and undissolved 
petrocarbon mixtures at the surface or 
in the deep plume (Ryerson et al., 2012); 
and estimates of microbial utilization (Du 
and Kessler, 2012; Joye et al., 2016, in this 
issue) and sedimentation (Passow and 

Ziervogel, 2016, in this issue).
About 833,000 barrels of the spilled 

oil were collected directly at the wellhead 
at depth (Lubchenco et  al., 2012), and 
roughly 390,000 barrels were removed 
from the ocean surface either by direct 
recovery via skimming or by in situ burn-
ing (Lehr et  al., 2010; Lubchenco et  al., 
2012). Most of the gaseous compounds, 
dominated by methane, were trapped in 
the deep plume and utilized by bacteria 
within days to weeks. One-third to up to 
almost half of the liquid oil compounds 
are thought to have been trapped in the 
deep plume as well, but these approxi-
mations rely on estimates of the amount 
of petroleum at the surface, which may 
be too low, because the amounts of 
oil in both thin sheens and thick car-
pets are difficult to quantify accurately. 
Microbial utilization of oil compounds 
in the plume based on the oxygen defi-
cit imply that some of the oil droplets 
trapped in the deep plume were also uti-
lized by bacteria, removing another 6% of 
all released petroleum, assuming that all 
of the dissolved petroleum was utilized 
first. Another significant fraction (~10%) 
of the oil in the deep plume sank, as the 
fingerprints of deposited oil compounds 
suggest (Valentine et al., 2014).
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FIGURE  3. Guesstimate budget to assess what happened to the 
5,000,000 barrels of released oil. It is still uncertain whether more or less 
than half of the spilled petrocarbon remained in the deep plume. Here, it is 
assumed that 57% remained at depth vs. 43% reaching the surface, because 
estimates of the fate of petrocarbon from the deep plume add up to this 
amount. Oil from the deep plume was largely biodegraded, recovered, or 
deposited as sediment on the seafloor. Budget uncertainties are larger for the 
petrocarbon at the surface, and the 5% values for microbial degradation, sed-
imentation, and stranding are placeholders only. See text for further detail.
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 Microbial degradation of surface 
oil has not been quantified, but may 
be assumed to be lower than that of 
the undissolved oil in the deep plume. 
Sedimentation rates of oil, as measured 
with shallow traps, imply that sedimen-
tation of surface oil was a significant loss 
process, but quantification is problem-
atic (Passow and Ziervogel, 2016, in this 
issue). Likewise, the total amount of oil 
that stranded along shorelines, or was 
lost due to weathering and photodegra-
dation, has not been quantified. In lieu 
of a good estimate, our budget assumes 
that 5% each of the spilled petroleum was 
(1) microbially degraded at the surface, 
(2) incorporated into sinking MOS at the 
surface, and (3) transported to shorelines. 
The large unexplained residual (Figure 3: 
balance of 14%) implies that each of these 
approximations may easily be low by a 
factor of two. The fraction of oil com-
pounds residing in the food chain (living 
organisms) is ignored in this budget, as it 
is assumed to be quantitatively minor. 
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