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BAY OF BENGAL: FROM MONSOONS TO MIXING
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to the world ocean (Sarin et  al., 1989). 
Recently, Krishna et al. (2015) estimated 
the nutrient flux from rivers to the north-
ern Indian Ocean to be 1.84, 0.28, and 
3.58 Tg yr–1 (1 Tg = 1012 g) of dissolved 
inorganic nitrogen, phosphate, and sil-
icate, respectively. However, roughly 
91% of the dissolved inorganic nitrogen 
is retained within the estuaries before 
reaching the coastal ocean, and river-
ine water is nutrient poor by the time it 
reaches the interior of the BoB.

Although primary production in the 
BoB is comparable to the Arabian Sea 
during northeast and post-monsoon sea-
sons, it is significantly lower in the BoB 
during the southwest monsoon (Gauns 
et al., 2005). Throughout the year, the BoB 
is characterized by oligotrophic condi-
tions, which have been attributed to weak 
vertical mixing (Ramaiah et  al., 2010). 
Strong stratification within the BoB con-
tributes to a quiescent environment, 
which may limit the overall nutrient sup-
ply to the system, resulting in lower pro-
ductivity (Prasanna Kumar et  al., 2002). 
Because strong stratification inhib-
its exchange between surface waters and 

those at depth, intense forcing, such as 
that during cyclones, may be required to 
erode the stratification and inject nutri-
ents into the euphotic zone to enhance 
primary production (Madhu et al., 2002; 
Maneesha et al., 2011; Latha et al., 2015). 
Studies indicate that cold-core eddies play 
an important role in uplifting nutrients to 
enhance primary production (Prasanna 
Kumar et  al., 2004; Vidya and Prasanna 
Kumar, 2013). Recent work suggests that 
frontal zones in the Arabian Sea har-
bor high phytoplankton biomass due to 
increased nutrient input through vertical 
mixing and advection (Roy et  al., 2015; 
Vipin et al., 2015). Fronts are commonly 
observed in the BoB as well, but they are 
largely due to lateral variations in salinity. 
Their importance for primary production 
is yet to be explored.

Here, we present data from a basin-
wide cruise conducted in November–
December 2013 that demonstrates how 
water column stratification influences 
the nutrient and phytoplankton size dis-
tributions in the Bay of Bengal. Strong 
near-surface stratification inhibits verti-
cal exchange of oxygen, creating a sharp 
and more intense OMZ in the north-
ern bay. An opportunistic marine mam-
mal survey was also conducted during 
the approximately two-week-long cruise. 
This study was supported through India’s 
National Monsoon Mission (NMM). 

MATERIALS AND METHODS
The research cruise, sponsored by the 
US Office of Naval Research-funded 
Air-Sea Interactions Regional Initiative 
(ASIRI), took place on R/V Roger Revelle 
from November 29 to December 12, 2013 
(Figure  1). Atmospheric forcing during 
the cruise was influenced by the pas-
sage of Cyclone Madi, which developed 
in the western BoB in early December. 
Peak cyclone wind speeds were reached 
on December 10, 2013. The local wind 
stress at the ship exceeded 0.4 N m–2 on 
December 7, 2013. 

INTRODUCTION
The Bay of Bengal (BoB) receives immense 
freshwater runoff from major rivers such 
as the Ganges, Brahmaputra, Godavari, 
Mahanadi, Cauvery, Irrawaddy, and 
Krishna (1.6 × 1012  m3  yr–1; UNESCO, 
1979). Surface water salinity in the BoB 
is on average 3–7 psu lower than the 
neighboring Arabian Sea (La Violette, 
1967; Varkey et al., 1996). Although pre-
cipitation and runoff are most intense 
during the southwest monsoon (June–
September; Unger et al., 2003), the transit 
time for riverine water to reach the interior 
of the Bay is several months, and fresh-
water content in the interior BoB peaks 
during the northeast monsoon (October–
December). This freshwater leads to 
strong, salinity-controlled stratification 
in the near-surface layer that inhibits ver-
tical mixing and results in the prevalence 
of oligotrophic conditions (Shetye et  al., 
1991; Shetye, 1993; Rao et al., 1994). 

Rivers are major sources of nutri-
ents to the BoB. Annually, the Ganges 
and Brahmaputra Rivers supply 
133 × 10 9 mol yr–1 of dissolved sili-
cate, which is ~2% of the riverine input 

ABSTRACT. The Bay of Bengal (BoB) is strongly density stratified due to large 
freshwater input from various rivers and heavy precipitation. This strong vertical 
stratification, along with physical processes, regulates the transport and vertical 
exchange of surface and subsurface water, concentrating nutrients and intensifying the 
oxygen minimum zone (OMZ). Here, we use basinwide measurements to describe the 
spatial distributions of nutrients, oxygen, and phytoplankton within the BoB during 
the 2013 northeast monsoon (November–December). By the time riverine water 
reaches the interior bay, it is depleted in the nutrients nitrate and phosphate, but not 
silicate. Layering of freshwater in the northern BoB depresses isopycnals, leading to 
a deepening of the nutricline and oxycline. Oxygen concentrations in the OMZ are 
lowest in the north (<5 µM). Weak along-isopycnal nutrient gradients reflect along-
isopycnal stirring between ventilated surface water and deep nutrient-replenished 
water. Picoplankton dominate the phytoplankton population in the north, presumably 
outcompeting larger phytoplankton species due to their low nutrient requirements. 
Micro- and nanoplankton numbers are enhanced in regions with deeper mixed layers 
and weaker stratification, where nutrient replenishment from subsurface waters is 
more feasible. These are also the regions where marine mammals were sighted. Physical 
processes and the temperature-salinity structure in the BoB directly influence the OMZ 
and the depth of the oxycline and nutricline, thereby affecting the phytoplankton and 
marine mammal communities.
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Sampling and Measurements
Repeat conductivity-temperature-depth 
(CTD) profiles were obtained from the 
surface to 220 m depth at 86 stations 
spaced approximately 20 nm (~37 km) 
apart along the ship’s track in inter-
national waters (Figure  1). Fluorescence 
(WET Labs, USA) and dissolved oxygen 
were measured using sensors attached 
to the CTD. Water samples for dissolved 
oxygen and chlorophyll-a (Chl-a) were 
acquired at 44 stations, and samples from 
29 stations were analyzed for nutrients 
and pigment levels. 

Chl-a was sampled by passing 5–10 L 
of seawater through 0.7 µm glass fiber 
filters and extracting the chlorophyll 
with 90% acetone. Concentrations 
were measured using high pressure liq-
uid chromatography. Nutrient concen-
trations were measured by the colori-
metric technique following Grasshoff 
et al. (1992). Following the pigment bio-
marker grouping method of Uitz et  al. 

(2006), we assessed the contributions 
of different size classes to total phyto-
plankton abundance. 

Satellite Data
Surface features of the study region 
were mapped from satellite observa-
tions, including sea surface tempera-
ture (SST), sea surface salinity (SSS), sea 
surface height (SSH), and surface Chl-a 
(Figure  1). Surface temperature data 
(10 km2, 15-day mean) were obtained 
from the US National Oceanographic 
Data Center and Group for High 
Resolution Sea Surface Temperature 
(GHRSST; http://pathfinder.nodc.noaa. 
gov) using Advanced Very High Reso-
lution Radiometer (AVHRR) Pathfinder 
Version 5.2 (PFV5.2) data (Casey et  al., 
2010). Surface salinity (110 km2, 21-day 
mean) was from the NASA Aquarius 
Project (2015). Sea surface height data 
(25 km2, 15-day mean) were produced 
and distributed by Aviso (http://www.

aviso.altimetry.fr), as part of the Ssalto 
ground processing segment. Finally, sur-
face Chl-a data (5 km2, 15-day mean) 
were obtained from Moderate Resolution 
Imaging Spectroradiometer (MODIS; 
Ocean Biology Processing Group, 2003). 
Additionally, merged SSH and derived 
geostrophic currents were obtained from 
US National Oceanic and Atmospheric 
Administration (NOAA) websites (http:// 
oceanwatch.pifsc.noaa.gov/las/servlets/ 
dataset; http://pathfinder.nodc.noaa.gov)  
using AVHRR PFV5.2 data (Casey 
et al., 2010).

Marine Mammal Observations
A team of eight observers collected 
marine mammal observations from the 
03 deck of R/V Roger Revelle by rotating 
through four positions every half hour 
during daylight hours: port and starboard 
observers used 25 × 150 deck-mounted 
“big-eye” binoculars to scan from their 
respective beams to 10° past the bow 

FIGURE 1. Maps of (a) AVHRR sea 
surface temperature (0.1° × 0.1°  
resolution; Nov 28–Dec 12, 
2013) with cruise track and sta-
tion numbers, (b) Aquarius sea 
surface salinity (1° × 1°; Nov  26–
Dec 17, 2013), (c) Aviso sea surface 
height (0.25° × 0.25°; Nov 28–
Dec 12, 2013), and (d) MODIS 
chlorophyll-a (0.05° × 0.05°; 
Nov 25–Dec 11, 2013) in the study 
region. The red line indicates the 
track of Cyclone Madi. 
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(average observer eye height was 12.8 m 
above the water), a center observer viewed 
the area near the ship with naked eyes and 
7 × 50 handheld binoculars, and an inde-
pendent observer viewed the area near the 
ship with naked eyes and 7 × 50 handheld 
binoculars to verify all species identifica-
tions and to report any sightings missed 
by the three primary observers. The cen-
ter observer also logged weather condi-
tions, visibility, and sighting data into a 
computer. The survey effort consisted of 
active searching in Beaufort 5 or less sea 
conditions while the ship was steaming 
at speeds of 8 knots or greater. All survey 
effort was conducted in passing mode; the 
ship was never diverted to identify species 
or estimate group sizes.

OBSERVED PHYSICAL AND 
BIOGEOCHEMICAL STRUCTURE 
Physical Setting: Lateral Variability 
and Vertical Structure
Figure 1 shows that surface salinity in the 
northern BoB (north of 15°N) is lower 
than that in the southern part of the bay. 
The low-salinity water to the north is also 
relatively cool compared to the south 
and east. Satellite SSH variations and the 
computed geostrophic surface circulation 
show higher SSH by 20 cm and an asso-
ciated east-west elongated anticyclonic 
eddy located north of 14°N (Figure  1). 
Two cyclonic features were located fur-
ther south, offshore of the equatorward 
East India Coastal Current. The satel-
lite SST showed a patch of cooler water 

(by 1°C) compared to surrounding 
regions around 15.5°N on the northwest-
ern part of the transect (Figure  1). This 
region is also marked by a patch of ele-
vated Chl-a at the surface, one of the 
few locations with a significant signal in 
remotely sensed Chl-a (Figure  1). This 
region was influenced by the passage of 
Cyclone Madi from December 6 to 13, 
2013; however, at this time the ship was 
on the eastern side of the BoB, outside the 
region of strong forcing. 

The satellite-derived salinity (Figure 2) 
is consistent with the vertical salinity 
structure (Figure  3), which shows low- 
salinity waters in the upper 50 m in the 
northern bay. Salinity variations govern 
the lateral and vertical density gradients 
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ern Bay of Bengal. 

in the upper 50–60 m of the ocean. The 
salinity difference between the surface 
and 100 m depth was ~1.5 psu in the 
south and 4 psu in the north along the 
central transect. Salinity dominates the 
density stratification near the surface, 
and the temperature often exhibits sub-
surface warm layers with temperatures in 
excess of 28°C (Figure 2). 

The survey passed through two eddies 
in the western BoB. The first eddy occurred 
near 1,750 km along-track distance, and 
was characterized by upwelled isopyc-
nals and elevated fluorescence within the 
mixed layer (Figure 2). The second eddy 
was an intrathermocline eddy, character-
ized by upwelled isopycnals near the sur-
face and depressed isopycnals at depth 
(Figure  2 near 2,100  km). The intra- 
thermocline eddy was also marked by 
relatively high fluorescence in the mixed 
layer. (Note that only the western edge of 
the intrathermocline eddy appears in the 
CTD profiles, as stations were temporar-
ily abandoned so that the ship could tran-
sit out of the path of Cyclone Madi.)

The thermocline was deeper in the 
oligotrophic region along the southern-
most leg of the transect and within the low- 
salinity zone in the northern Bay 
(Figure 2). The second half of the cruise 
(>2,500 km alongtrack distance) took 
place after the development of Cyclone 
Madi in the western BoB. Upper-ocean 
stratification was reduced relative to con-
ditions prior to the onset of Madi. In gen-
eral, higher values of subsurface oxy-
gen and mixed layer fluorescence were 
observed after the cyclone passed, even 
in regions far removed from the its track. 
This response is consistent with elevated 
vertical mixing observed after the devel-
opment of the cyclone (not shown here).

Nutrient Distribution
The nitrate concentration in the sur-
face waters was <0.1 µM at the western, 
northern, and eastern stations (Figure 3), 
but an enhancement was observed in 
the southern to central BoB early in 
the cruise (e.g.,  Central Bay Station, 
Figure 3). Density influences the vertical 
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variation in nitrate concentration. For 
example, compare the relatively shal-
low nitrate-depleted layer in the western 
BoB with the deep nitrate-depleted layer 
in the eastern BoB (Figure 3). The north-
ern BoB is characterized by two regions 
of weakly stratified water separated by 
a strongly stratified layer. Both of these 
layers are depleted in nitrate. The con-
centrations of phosphate follow nitrate, 
with a mean phosphate concentration of 
0.13 ± 0.1 µM in surface layers, and rel-
atively lower values <0.1 µM in the low- 
salinity region. The lower phosphate con-
centrations observed in the northern 
bay suggest that riverine water is either 
depleted in both nitrate and phosphate, or 
that these nutrients are consumed nearer 
the coast and are not resupplied from 
the subsurface due to the strong strat-
ification induced by the surface fresh- 
water. In contrast to nitrate and phos-
phate, silicate concentrations were close 
to or above 2 µM in the surface, suggest-
ing that it was not a limiting nutrient 
during the study period. However, <2 µM 
of silicate was observed in the cyclone- 
influenced regions associated with high 
Chl-a, suggesting removal through bio-
logical processes. Relatively higher con-
centrations of silicate were observed in 
the low-salinity region, suggesting that 
freshwater is a strong source of silicate 
to the BoB (Figure  3). The N:P ratios 
(0.41 to 9.44) were below the Redfield 
value of 16 in the upper water column 
along the cruise track, indicating that 
nitrogen is a limiting nutrient in the pho-
tic layer. The Si:N ratios were above 10 in 
the upper water column with higher val-
ues (>20) in the low-salinity region, con-
sistent with the interpretation that sil-
icate is not a limiting nutrient in the 
entire study region. 

Spatial Variations in 
Phytoplankton Biomass and 
Pigment Signatures
The vertical structure of Chl-a along the 
cruise track displayed lower values in the 
upper 20 m, with a persistent subsurface 
Chl-a maximum (SCM) throughout the 
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study region (Figure 2). The depth of the 
SCM followed the mixed layer depth, indi-
cating that physics (vertical mixing and 
stratification intensity) has a significant 
impact on variations in SCM. Relatively 
higher mixed layer Chl-a was observed 
in mesoscale eddies and at salinity out-
croppings in the northern BoB (~750 km 
in Figure  2), suggesting that nutrient 
renewal by mixing or upwelling in these 
structures may be important for phy-
toplankton production throughout the 
BoB. Other profiles displayed enhanced 
mixed layer fluorescence associated with 
strong wind forcing during the passage 
of Cyclone Madi. Perhaps surprisingly, 
this response is no more intense than that 
observed in mesoscale eddies and at the 
northern salinity front.

The differentiation into phytoplank-
ton size classes within the mixed layer 
showed that microplankton communi-
ties were low, between 10% and 15% of 
total phytoplankton, whereas nano- and 
picoplankton contributed 20%–40% and 
50%–75%, respectively (Figure  4). The 
dominance of smaller size classes is par-
ticularly pronounced in low-salinity 
regions of the northern BoB, where pico-
plankton account for >50% of the phyto-
plankton biomass at all sampled depths. 
The enhanced contribution of picoplank-
ton presumably resulted from low nutri-
ent levels and a deeper nitracline in the 
north, while the relative increased con-
tribution from nano- and microplankton 
was observed in the southeast associated 
with a shallower nitracline. This suggests 
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et al., 2015), the low-salinity waters in the 
northern BoB contain high silicate con-
centrations but low nitrate and phos-
phate concentrations (Figure  3). Strong 
vertical stratification and weak diapyc-
nal mixing limit the supply of nutrients 
from depth to the photic zone (Prasanna 
Kumar et  al., 2002). The N:P ratios in 
near-surface water of riverine origin are 
<4 while Si:N ratios are >30, indicat-
ing that both nitrate and phosphate, but 
not silicate, are limiting to phytoplank-
ton growth. An increase in the N:P ratio 
(>12) that is closer to the Redfield ratio of 
16, is observed below 50 m depth, where 
regeneration of organic matter con-
tributes to the nutrient pool (Figure  3). 
Enhanced vertical mixing was observed 
on the return transit south of 12°N (pro-
files 55 and greater) coincident with 
increased winds associated with Cyclone 
Madi. Enhanced nutrient concentrations 
are observed in these regions relative to 
the low-salinity water in the north, with 
N:P ratios of >8. 

Influence of Stratification on 
Phytoplankton Biomass and 
Size Distribution
Physical processes significantly influ-
ence phytoplankton composition and 
size structure in the Bay of Bengal by 
modulating the availability of nutrients. 
The contribution of microplankton com-
munities is low (10%–15%) compared 
to nano- (20%–40%) and picoplankton 
(50%–75%) in the entire study region 
(Figure 4). The dominance of picoplank-
ton in the Bay of Bengal is related to the 
low concentrations of nitrate and phos-
phate (Figure  3). Strong stratification 
inhibits the supply of new nitrogen from 
subsurface to surface waters (Prasanna 
Kumar et al., 2002) as evidenced from the 
limiting near-surface concentrations of 
nitrate and phosphate. Hence, the biolog-
ical production may largely be supported 
by regenerated nutrients (Gauns et  al., 
2005), as suggested by the ammonium 
concentrations (0.1–0.3 µM) in many of 
the profiles, particularly in the central 
and eastern bay (Figure 3). 
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a diversity of phytoplankton compo-
sition driven by stratification associ-
ated with the availability of nutrients in 
the Bay of Bengal. 

Spatial Variations in Intensity of 
the OMZ in the Bay of Bengal
The upper boundary of the OMZ follows 
the thermocline, with a shallower oxy-
cline in regions with a shallow thermo-
cline and deeper oxycline in regions 
of depressed thermocline (Figure  2). 
The depth of the 20°C isotherm (D20) 
shows a correlation with the depth of 
the 20  µM isoline of oxygen (DO20)  
(r2  = 0.46; p  <0.001) (Figure  5) and 
26.3 isopycnal (r2 = 0.54; p <0.001). The 
intensity of the OMZ is the strongest to 
the north beneath fresh riverine water. 
The dissolved oxygen concentrations in 
the OMZ (between 100 m and 200 m 
depth) were significantly lower in the 
northern and southern regions of the bay  
(8.7 ± 6 µM). Dissolved oxygen concen-
trations in the OMZ (between 100 m 
and 200 m depth) were very low, due to 
poor ventilation. 

Spatial Variations in Marine 
Mammal Distribution
A total of 1,669 km of trackline were sur-
veyed in Beaufort 5 or less sea condi-
tions, and 52 sightings of 12 different spe-
cies were recorded (Table  1, Figure  6). 
The diversity of encountered species was 

quite high, but there were also numer-
ous unidentified sightings (Table  1) 
owing to the survey’s passing mode (the 
ship was not diverted from the trackline 
to identify species). The vast majority of 
sightings were concentrated along the 
westernmost transect line and just south-
east of Sri  Lanka, with only a few ceta-
ceans encountered along the southern-
most transect line and in the central to 
northern BoB (Figure  6a). However, it 
is important to note that sighting con-
ditions were considerably better in the 
southern bay than in the central and 
northern bay (Figure 6b), so these broad 
patterns could be influenced by differ-
ences in detectability. The only species 
identified in the central BoB between 
10°N and 18°N were sperm whales 
(Physter macrocephalus) and spinner dol-
phins (Stenella longirostris) at the north-
western edge of our survey, and a large 
group (~200) of spinner dolphins along 
the southern transect line.

DISCUSSION
Influence of Stratification on 
Concentrations and Ratios of 
Nutrients in the Bay of Bengal
The nutrient distribution shows signifi-
cant geographic variation. Because river 
waters are a strong source of silicate to 
the interior of the Bay of Bengal, and both 
nitrate and phosphate are utilized within 
the estuaries (Sarin et  al., 1989; Krishna 
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Microplankton contribute a larger 
fraction of the phytoplankton in the cen-
tral bay (~15%) as compared to other 
regions (8%; tstat = 6.6; p <0.001). The 
variations in the contributions of micro-, 
nano-, and picoplankton follow the nitra-
cline, with a significant linear relation 
between nitracline depth and fraction of 
picoplankton (r2 = 0.58; p <0.001), and 
an inverse relation with fraction of micro-
plankton (r2 = 0.61; p <0.001). The nitra-
cline depth, which governs the availabil-
ity of nutrients and the size distribution 
of phytoplankton, is related to the phys-
ical structure and salinity stratification. 

SCMs were observed in the entire 
study region (Figure 2) at the base of the 
mixed layer. SCM occurrence is reported 
in the literature and attributed to nutrient 
availability only below the mixed layer, 
which is shallower than the euphotic 
depth (e.g.,  Murty et  al., 2002). Nano- 
and picoplankton contribute equally to 
the SCM compared to microplankton, 
possibly due to availability of nutrients 
and enough light at this depth. 

Influence of Stratification on OMZ 
Intensity in the Bay of Bengal
Variations in the depth and intensity of 
the OMZ in the BoB are associated with 
stratification and production of phyto-
plankton biomass. The decomposition 
of sinking organic matter in the twilight 
zone removes dissolved oxygen from the 
water column and intensifies the OMZ. 
OMZ intensity is strongest below the low- 
salinity region (<5 µM), where stratifica-
tion inhibits vertical mixing. Suppression 
of ventilation by stratification is a fun-
damental cause of the OMZ in the BoB 
(Sarma, 2002), and it is intensified in 
the north due to river discharge (Sarma 
et  al., 2013). However, the low oxygen 
concentrations observed in this study 
have not previously been reported in the 
open ocean, and limited observations 
from other studies have suggested val-
ues in excess of 10 µM during the pre- 
southwest and northeast monsoon peri-
ods (Rao et al., 1994). In previous studies, 
these higher dissolved oxygen values 

in the northern BoB were attributed to 
faster sinking of organic river-borne sus-
pended matter. Ballasting of organic par-
ticles leads to less bacterial degradation 
within the water column due to the lower 
residence time of sinking particles (Naqvi 

et al., 1994, 1996). Higher total suspended 
matter was reported in the northern BoB 
due to the influence of river discharge, as 
shown by the salinity decrease. Though 
picoplankton dominated the phytoplank-
ton in the low-salinity, stratified surface 

TABLE 1. Number of group sightings and group sizes.

Species Sightings Group size

Stenella longirostris 10 302, 200, 200, 180, 42, 40, 30, 30, 25, 13

Unidentified small dolphin 7 65, 50, 37, 30, 27, 13, 10

Unidentified dolphin 6 20, 7, 2, 1, 1, 1

Stenella coeruleoalba 5 80, 25, 15, 14, 5

Pseudorca crassidens 3 11, 1, 1

Stenella attenuata 3 200, 18, 13

Tursiops sp. 3 72, 20, 3

Grampus griseus 2 14, 8

Delphinus sp. 2 120, 50

Physeter macrocephalus 2 10, 1

Feresa attenuata 1 10

Orcinus orca 1 2

Balaenoptera musculus 1 1

Kogia sp. 1 1

Unidentified Balaenoptera sp. 1 1

Unidentified large whale 1 1

Unidentified large delphinid 1 2

Unidentified medium delphinid 1 11

Unidentified cetacean 1 1

FIGURE 6. (a) Distribution of the marine mammal effort (green) and sightings (red). 
(b) Sea states on the Beaufort scale.
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water, total organic carbon, as indicated 
by Chl-a (Figure  2), is lower than in 
other study zones. The lower availability 
of organic matter at the surface does not 
justify high oxygen demand as a cause of 
the intense OMZ. In this case, the intense 
OMZ is aggravated by the restricted sup-

ply of oxygen from the surface. In con-
trast to the ballast hypothesis, our study 
suggests that physical processes (stratifi-
cation and lack of vertical mixing) con-
trol the depth and intensity of the OMZ 
rather than biological production and 
mineral ballast. Despite such low oxygen 
levels in the OMZ, denitrification was not 
observed, and nitrite concentrations were 
low (<0.1 µM). However, as discussed 
by Sarma et al. (2013), the occurrence of 
anammox may be possible without accu-
mulation of nitrite in the water column. 
More work is needed to confirm the pos-
sible occurrence of anammox in the BoB.

Oceanographic Influences on 
Marine Mammal Distribution
Several authors have documented 
extremely high cetacean diversity in the 
waters near Sri  Lanka (Leatherwood 
et al., 1984; Ballance and Pittman, 1998; 
de Boer et  al., 2002). Our observations 
from the offshore waters to the east of 
Sri  Lanka, where little marine mammal 
survey work has been conducted, confirm 
this. The waters we surveyed to the south-
east of Sri Lanka and along the western-
most transect line had the highest abun-
dance and diversity by far of any of the 
other surveyed areas. Sighting conditions 
were excellent in this region, facilitating 

both detection and positive identifica-
tion of encountered species. Both visibil-
ity and sea states were poor in the central 
and northern BoB, and only two species, 
sperm whales and spinner dolphins, were 
identified there. While it is likely that the 
observed difference in marine mammal 

abundance and diversity between these 
two regions is real, the evidence for this 
is unfortunately only anecdotal, owing to 
the marked differences in sighting condi-
tions between the regions and the small 
sample size. The differences in both phys-
ical and biological conditions between 
the southern and central/northern BoB 
observed during the cruise were cer-
tainly striking, with strong gradients in 
water masses as well as the depths of the 
thermocline, halocline, and OMZ. This 
variability can profoundly influence ceta-
cean distribution via changes in both the 
vertical availability and the community 
composition of their prey (Reilly, 1990; 
Baumgartner et al., 2001, 2003). Despite 
a lack of strong observational support, 
it remains conceivable that the north/
central region supports a different and 
smaller community of cetacean species 
than the southern BoB. 

Summary and Conclusions
Our study examines the distribution 
of nutrients, dissolved oxygen, phyto-
plankton size distribution, and marine 
mammal diversity in the Bay of Bengal. 
Riverine-influenced near-surface water 
in the northern BoB was found to be rel-
atively poor in nutrients. The study sam-
pled two mesoscale eddies of variable 

structure: a cold core eddy and an intra-
thermocline eddy. Atmospheric forc-
ing during the cruise was dominated by 
the development of Cyclone Madi, which 
affected the observed stratification and 
vertical mixing at distances far removed 
from the center of the storm. The OMZ 
was at its strongest to the north, where 
layering by riverine water intensifies 
stratification and depresses the thermo-
cline. Though picoplankton dominated 
in the study region, the concentration of 
micro- and nanoplankton was greater in 
the western and central bay, possibly due 
to supply of nutrients from the subsurface 
by eddies, and mixing by cyclone-related 
winds. This study suggests that stratifi-
cation significantly influences the input 
of nutrients to the sunlit zone, resulting 
in variations in phytoplankton biomass 
and size structure in the BoB. The marine 
mammal sightings recorded during our 
survey suggest that marine mammals 
predominate in regions of weaker strat-
ification, higher phytoplankton produc-
tivity, and less-intense oxygen depletion, 
but further surveying is required to infer 
definitive relationships among biogeo-
chemistry, the phytoplankton commu-
nity, and faunal populations. 
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