
CITATION

Phillips, J.C., G.A. McKinley, V. Bennington, H.A. Bootsma, D.J. Pilcher, R.W. Sterner, 

and N.R. Urban. 2015. The potential for CO2-induced acidification in freshwater: 

A Great Lakes case study. Oceanography 28(2):136–145, http://dx.doi.org/10.5670/

oceanog.2015.37.

DOI

http://dx.doi.org/10.5670/oceanog.2015.37

COPYRIGHT 

This article has been published in Oceanography, Volume 28, Number 2, a quarterly 

journal of The Oceanography Society. Copyright 2015 by The Oceanography Society. 

All rights reserved. 

USAGE 

Permission is granted to copy this article for use in teaching and research. 

Republication, systematic reproduction, or collective redistribution of any portion of 

this article by photocopy machine, reposting, or other means is permitted only with the 

approval of The Oceanography Society. Send all correspondence to: info@tos.org or 

The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA.

OceanographyTHE OFFICIAL MAGAZINE OF THE OCEANOGRAPHY SOCIETY

DOWNLOADED FROM HTTP://WWW.TOS.ORG/OCEANOGRAPHY

http://dx.doi.org/10.5670/oceanog.2015.37
http://dx.doi.org/10.5670/oceanog.2015.37
http://dx.doi.org/10.5670/oceanog.2015.37
mailto:info@tos.org
http://www.tos.org/oceanography


Oceanography |  Vol.28, No.2136

The Potential for CO2-Induced 
Acidification in Freshwater

EMERGING THEMES IN OCEAN ACIDIFICATION SCIENCE

ABSTRACT. Ocean acidification will likely result in a drop of 0.3–0.4 pH 
units in the surface ocean by 2100, assuming anthropogenic CO2 emissions 
continue at the current rate. Impacts of increasing atmospheric pCO2 

on pH in freshwater systems have scarcely been addressed. In this study, 
the Laurentian Great  Lakes are used as a case study for the potential for 
CO2-induced acidification in freshwater systems as well as for assessment 
of the ability of current water quality monitoring to detect pH trends. If 
increasing atmospheric pCO2 is the only forcing, pH will decline in the 
Laurentian Great Lakes at the same rate and magnitude as the surface ocean 
through 2100. High-resolution numerical models and one high-resolution 
time series of data illustrate that the pH of the Great Lakes has significant 
spatio-temporal variability. Because of this variability, data from existing 
monitoring systems are insufficient to accurately resolve annual mean 
trends. Significant measurement uncertainty also impedes the ability 
to assess trends. To elucidate the effects of increasing atmospheric CO2 
in the Great  Lakes requires pH monitoring by collecting more accurate 
measurements with greater spatial and temporal coverage. 

By Jennifer C. Phillips, Galen A. McKinley, 

Val Bennington, Harvey A. Bootsma, Darren J. Pilcher, 

Robert W. Sterner, and Noel R. Urban
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gradients because of the smaller propor-
tional change in the gradient. But, all 
else being equal, they will still acidify. 
Assuming no other changes, lakes with a 
present-day pCO2 of 1,000 and 2,500 µatm 
that experience a pCO2

atmosphere increase 
of 550 µatm will show a pH decline 
of –0.19 and –0.09 units, respectively 
(Figure 1). The conclusion that acidifica-
tion should not be prevented by a posi-
tive water-to-air pCO2 gradient is con-
sistent with findings from the equatorial 
Pacific, where the surface ocean pCO2 
is above pCO2

atmosphere (Takahashi et  al., 
2009). Here, acidification is proceeding at 
rates comparable to the rest of the ocean 
(Orr et al., 2005; Feely et al., 2006). 

The degree to which inorganic carbon 
dynamics affects pCO2

atmosphere in the 
Great Lakes is difficult to assess because 
the carbon cycles of these lakes are poorly 
constrained by existing data (Eadie and 
Robertson, 1976; Urban et  al., 2005; 
Atilla et al., 2011; McKinley et al., 2011; 
Bennington et  al., 2012). However, if 
the pCO2 of these lakes is responsive to 
pCO2

atmosphere, acidification should occur 
throughout the water column because the 
lakes are dimictic (mix from the surface 
to the bottom twice a year), and thus the 
entire water column should equilibrate 
with the atmosphere each year. 

The degree to which the Laurentian 
Great Lakes are comparable to the ocean 
in terms of their biogeochemistry and 
carbon cycling is one way to initially con-
sider the likely influence of pCO2

atmosphere 
on the pCO2 of large lakes. Primary pro-
duction (PP) in the Great Lakes and in the 

ocean strongly impacts pCO2 seasonality 
(Bennington et al., 2012), and the magni-
tude of Great Lakes PP is comparable to 
the ocean. Karl et al. (1998) report annual 
average PP at Station ALOHA in the sub-
tropical North Pacific of 172 gCm−2 yr−1. 
Cotner et al. (2004) report annual PP of 
119–128 gCm−2 yr−1 for Lake Michigan, 
and 73–110 gCm−2 yr−1 for Lake Superior. 
Sterner (2010) reports 94 gCm−2 yr−1 for 
Superior. In the most productive part of 
the Laurentian Great Lakes, western Lake 
Erie, 320–370 gCm−2 yr−1 was recently 
reported (Fitzpatrick et al., 2007), similar 
to coastal upwelling regions of the global 
ocean (Sarmiento and Gruber, 2006). 

Another factor that makes the 
Laurentian Great  Lakes similar to the 
ocean is the relatively small biogeochem-
ical effects from their watersheds. Small 
temperate lakes tend to respire alloch-
thonous organic carbon and emit CO2 
to the atmosphere (Cole et  al., 1994; 
Hanson et al., 2004). The delivery of alka-
linity and dissolved inorganic carbon 
(DIC) and dissolved organic carbon from 
catchments to lakes have been shown to 
be major factors in alkalinity and carbon 
budgets for small lakes (McConnaughey 
et al., 1994; Einsele et al., 2001; Alin and 
Johnson, 2007; Stets et  al., 2009). The 
input of allochthonous organic carbon 
to the Laurentian Great  Lakes, in con-
trast, is believed to be small because of 
the relatively small watershed-to-lake 
surface area ratios (ranging from 1.6:1 in 
Lake Superior to 3.4:1 for Lake Ontario; 
http://www.worldlakes.org). In a study 
of Finnish boreal lakes, areal C evasion 

INTRODUCTION
Ocean pH is predicted to drop by 
0.3–0.4 units by 2100 if humans continue 
to consume fossil fuels under “business as 
usual” scenarios. This projected change 
will result in an increase of hydrogen ion 
concentrations [H+] of up to 150% and 
a 50% decrease in carbonate ion (CO3

2–) 
concentrations in seawater (Orr et  al., 
2005). Though our understanding of 
ocean acidification has advanced in the 
last decade, the question of how increas-
ing atmospheric CO2 concentrations may 
affect freshwater systems has been left 
largely unanswered. 

The Laurentian Great Lakes constitute 
the largest freshwater system on Earth, 
containing roughly 18% of global liquid 
surficial freshwater and 84% of North 
America’s surface freshwater. In addition 
to sustaining the region’s 34 million peo-
ple (US EPA, 1988), the lakes support a 
strong tourism and fishing industry, gen-
erating US$62 billion annually (Vaccaro 
and Read, 2011). Myriad anthropogenic 
stressors such as climate change, pol-
lution, habitat alteration, and coastal 
development impact the lakes (Allan 
et al., 2013), and the potential additional 
stressor of CO2-induced acidification 
needs to be considered. Here, we sum-
marize the evidence that the Laurentian 
Great  Lakes, and by extension other 
freshwater systems, may become acidified 
due to increases in the partial pressure of 
CO2 in the atmosphere (pCO2

atmosphere). 
Many small lakes are net CO2 emit-

ters because they are loci for the accu-
mulation and processing of carbon from 
their associated watersheds (Hanson 
et al., 2004; Alin and Johnson, 2007; Cole 
et al., 2007). However, even if a lake is a 
CO2 source, it will not necessarily be pro-
tected from the influence of acidification 
induced by increasing atmospheric CO2 
concentrations. Instead, this increase will 
reduce the efflux from the lake because 
of a reduced water-to-air pCO2 gradi-
ent. Lakes with large positive water-to-
air pCO2 gradients (Sobek et  al., 2005) 
will experience smaller reductions in 
efflux than those with small water-to-air 

 “Like the coastal ocean, freshwater 
systems such as the Laurentian Great Lakes 
have the potential to be natural laboratories 

for monitoring change in carbonate chemistry 
and for better understanding of the complex 

interactions of numerous stressors.

”
. 

http://www.worldlakes.org
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diminished strongly with lake area, also 
indicating that larger lakes are typically 
closer to equilibrium with pCO2

atmosphere 
than small lakes (Kortelainen et al., 2006). 

Of the five Laurentian Great  Lakes, 
Lake Superior’s inorganic carbon dynam-
ics are the best understood and thus can be 
assessed in more detail (Atilla et al., 2011; 
Bennington et  al., 2012). Available data 
suggest that summer lake-average pCO2 in 
Lake Superior nearly equals pCO2

atmosphere 
while the spring lake-average pCO2 is 
slightly elevated above pCO2

atmosphere 
(Atilla et  al., 2011). An eddy-resolving 
coupled hydrodynamic-biogeochemical 
model, the Massachusetts Institute of 
Technology General Circulation Model 
for Superior (MITgcm.Superior), cap-
tures these observations, and offers an 
estimate of the full annual cycle of pCO2 
in which summertime CO2 uptake due to 
biological drawdown is largely balanced 
by efflux of respired CO2 during the other 
seasons (Bennington et al., 2012). Stable 

isotope analyses indicate that the δ14C of 
DIC in Lake Superior is close to atmo-
spheric values and suggests that DIC 
cycles across the air-lake interface on a 
time scale of three years (Zigah et  al., 
2011). These studies support the conclu-
sion that air-water equilibration strongly 
influences the pCO2 in Lake Superior on 
multiyear time scales. If this is the case, 
the lake’s pCO2 should rise with pCO2 in 
the atmosphere, and CO2-induced acidi-
fication should occur.

Another approach to determining the 
relative importance of air-water flux to 
lake-wide carbon budgets is to summa-
rize published estimates of autochthonous 
and allochthonous carbon fluxes. Despite 
large uncertainties, this method suggests 
that Lakes Superior, Michigan, and Huron 
are slight CO2 sources and Lakes Erie and 
Ontario are slight CO2 sinks (McKinley 
et  al., 2011). Lakes Erie and Ontario are 
sinks because they have higher productiv-
ity and shallower depths, leading to burial 

of a larger fraction of primary production 
(Eadie and Robertson, 1976).

It is important to distinguish acidifi-
cation caused by increased atmospheric 
CO2 from that caused by acidic precipita-
tion. The reaction of sulfur and nitrogen 
oxides from fossil fuel combustion with 
atmospheric water vapor produces strong 
acids (HNO3 and H2SO4) that can be 
deposited to water bodies. For the coastal 
and open ocean, these effects are only a 
few percent of the pH change expected 
from acidification due to atmospheric 
CO2 (Doney et  al., 2007). The literature 
does not suggest strong acid rain impacts 
on the Great Lakes due to their large vol-
umes and positions largely upwind of 
industrial sources (Environment Canada 
& US EPA, 2009). Thus, similar to the 
ocean, it can be expected that pH impacts 
from the steady and persistent source 
of CO2 from the atmosphere will have a 
greater impact on Great Lakes pH. 

Here, we present projections for future 
pH of the Laurentian Great  Lakes. We 
use high-resolution numerical models to 
assess whether or not the available data 
have sufficient temporal and spatial cov-
erage to be able to assess annual mean pH 
trends. While this assessment is region-
ally focused, it has direct implications 
for the potential for acidification from 
increasing atmospheric pCO2 across 
freshwater systems. 

METHODS
Data
High-Resolution Time Series 
In western Lake Superior, high-​
frequency measurements were taken 
7.5 km offshore of Split Rock Lighthouse 
(47.19°N, 91.34°W) at 12 m depth using 
a subsurface mooring equipped with 
a Submersible Autonomous Moored 
Instrument for pCO2 (SAMI-CO2; Baehr 
and DeGrandpre, 2004; Atilla et al., 2011) 
and a temperature sensor. Data were col-
lected every half hour from June 6, 2001, 
through September 11, 2001. Calculation 
of pH assumed a constant alkalinity of 
838 meq m–3 (Table  1) and freshwater 
dissociation constants using the National 

FIGURE 1. Demonstration of the effect of increased pCO2 on freshwater pH across a range of cur-
rent lake surface pCO2 (250–2,500 μatm, consistent with observed values across global fresh-
water lakes; Sobek et al., 2005). Contours indicate a positive change in pCO2, or ∆pCO2, from 50 to 
550 µatm. These increases are consistent with current IPCC projections for the growth in atmo-
spheric pCO2 from the present to 2100. These results are independent of alkalinity, which is held 
constant (i.e., for mean alkalinity ranging from 800–2,500 meq m–3, contours of change are indis-
tinguishable from one another).
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Bureau of Standards (NBS) scale (Millero 
et al., 1979; Dickson, 1990; Wanninkhof, 
1992; Atilla et al., 2011). 

US EPA Biannual Survey 
The US Environmental Protection 
Agency (US EPA) surveys all the 
Great Lakes biannually in the spring and 
summer (typically April and August) 
at 8–20 sites per lake. For example, in 
Lake Superior, pH, alkalinity, and tem-
perature measurements are recorded 
at 19 sites, with four depths per site in 
April and six depths per site in August. 
Data are available since 1986, except in 
Lake Superior since 1996 (http://www.
epa.gov/greatlakes/​monitoring/data_
proj/glenda). This monitoring supports 
the US commitment to the US/Canada 
Great  Lakes Water Quality Agreement. 
Data through 2011 are analyzed. 

US EPA measures pH with potentio-
metric electrodes after the samples have 
been warmed to 25°C (Atilla et al., 2011). 
The potentiometric approach is less accu-
rate than measuring pH with a spectro-
photometer and indicator dye (Dickson 
et al., 1993; French et al., 2002; Dickson 
et al., 2007); calculating pH from a com-
bination of pCO2, DIC, and alkalin-
ity (Dickson et al., 2007); or using auto-
mated pH sensors that are increasingly 
employed in marine environments (Martz 
et  al., 2010). French et  al. (2002) found 
a negative bias of 0.137 pH units using 
electrodes in comparison to the spectro-
photometric approach. Additionally, 
measurements by the US EPA are made at 
any time of day, which may alias diurnal 
variability (5–190 µatm; Atilla et al., 2011). 
Measurement uncertainty (0.17 pH units) 
is estimated from the standard deviation 
across 672 pairs of replicate pH obser-
vations by US EPA. Despite these signif-
icant uncertainties, the US EPA data are 
the only long-term pH record available 
across the Great Lakes and thus must be 
considered in this assessment. 

For the months of April and August, 
all pH data above 3 m water depth are 
averaged to determine lake-mean mean 
surface pH. Uncertainty due to spatial 

sampling is estimated from the standard 
deviation across observations within each 
lake. This estimate is combined with the 
measurement uncertainty (by square 
root of the sum of squares) to arrive at 
the total monthly uncertainty. April and 
August mean pH is the mean of April 
and August data in each year, with uncer-
tainty combined using the square root of 
the sum of squares.

Projections and Models
Carbon Chemistry Projection 
For 1970 to 2100, we assume IPCC  
IS92a (the business as usual scenario) 
and A1FI (the fossil fuel intensive sce-
nario) pCO2

atmosphere projections. Each 
lake is assumed to equilibrate with this 
pCO2 at a constant alkalinity for each lake 
(Table 1), and pH is calculated (Millero, 
1979; Dickson, 1990; Atilla et  al., 2011). 
For sensitivity tests with warming, we 
include a linear trend leading to an upper-
bound 8°C warming of lake surface tem-
peratures by 2100 (Wisconsin Initiative 
on Climate Change Impacts, 2011).

Coupled Hydrodynamic-
Biogeochemical Models of 
Lakes Superior and Michigan 
Coupled hydrodynamic-biogeochemical 
models are used to estimate spatio- 
temporal variability and to assess the abil-
ity of the US EPA monitoring program to 
capture lake-wide, annual-average pH. 
The MITgcm (Marshall et al., 1997) was 
configured for Lake Superior (Bennington 
et  al., 2010). Within this eddy-resolving 
physical model (MITgcm.Superior), a 

biogeochemical-carbon module includ-
ing complete carbon chemistry, air-​water 
CO2 fluxes, a lower food web module, 
and biogeochemical inputs from rivers 
(Bennington et al., 2012) was integrated 
for 1997–2001. Model pH is calculated 
from local concentrations of DIC, alkalin-
ity, and temperature. MITgcm.Superior 
was modified to simulate the physics 
and biogeochemistry of Lake Michigan 
(MITgcm.Michigan) for 2007–2010 
(Pilcher et al., 2015).

RESULTS 
Projected Great Lakes pH Trends
Future rates and effects of CO2-induced 
acidification in the Great Lakes are pro-
jected using only carbon chemistry and 
the assumption that lake pCO2 follows 
pCO2

atmosphere until 2100. Though other 
changes should factor into the carbon bal-
ance of these ecosystems over the com-
ing century, including changing nutrient 
loading, internal alkalinity loss or gener-
ation, food web shifts or watershed car-
bon inputs, we focus here on elucidating 
the impacts on pH of only air-lake CO2 

equilibration. This approach is consis-
tent with early ocean acidification studies 
(Orr et al., 2005). 

Across the Great Lakes, mean alkalinity 
and associated carbonate parameters vary 
greatly due to the geographic and geologic 
setting of each lake and its position along 
the flow path through the series of lakes 
(Table 1). Lake Superior has low alkalinity 
because it sits upon the granitic Canadian 
Shield where slow weathering and shal-
low soils result in low carbonate inputs. 

TABLE 1. Physical and biogeochemical characteristics of the Laurentian Great Lakes.1

Lake Surface Area 
(m2 × 1010)

Water Residence 
Time (yr)

Mean (Max) 
Depth (m)

Mean Alkalinity 
(meq m–3)

Superior 8.21 174 149 (406) 838

Michigan 5.78 104 85 (282) 2,181

Huron 5.96 21 59 (229) 1,561

Erie 2.57 2.6 19 (64) 1,817

Ontario 1.90 7.3 86 (244) 1,836

1 Surface area, residence time, and mean and max depth values are from The Great Lakes: An Environmental 
Atlas and Resource Book (US Environmental Protection Agency, 1988) and mean alkalinity from the Great Lakes 
Environmental Database (http://www.epa.gov/greatlakes/monitoring/data_proj/glenda/#query).

http://www.epa.gov/greatlakes/monitoring/data_proj/glenda
http://www.epa.gov/greatlakes/monitoring/data_proj/glenda
http://www.epa.gov/greatlakes/monitoring/data_proj/glenda
http://www.epa.gov/greatlakes/monitoring/data_proj/glenda
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The other lakes reside in carbonate basins 
and are more alkaline. These differences 
largely explain the pH offset from lake to 
lake (Figure 2a). Despite these differences 
in initial pH, the magnitude of change in 
pH across all of the lakes is the same from 
these water-chemistry-only based projec-
tions: a 0.33 unit decline by 2100 under 
the IS92a scenario. Under A1FI, the pro-
jected decline is 0.46 units by 2100. Surface 
water warming of 8°C by 2100 reduces 
CO2 solubility in the lakes, modulating 
the pH decline to –0.29 units by 2100 for 
the IS92a scenario (Figure 2a). Across the 
lakes, there is variation in the trajectories 
for carbonate ion concentration, with the 
greatest change in Lake Michigan and the 
least change in Lake Superior (Figure 2b). 
Lake Michigan has a higher initial carbon-
ate ion concentration and is not flushed 
with low-alkalinity water from Superior, 
as is Lake Huron. 

Observed Great Lakes pH
Is the observed record of sufficient reso-
lution in space and time to corroborate 
or to invalidate these pH trend estimates? 

High-Resolution Time Series 
In the western arm of Lake Superior, 
pH varies from 7.95 to 8.73, a range of 
0.78 pH units from June to September 
2001, with a temporal standard devi-
ation of 0.13 pH units (Figure  3). 
MITgcm.Superior indicates similar vari-
ability at this location (Bennington 
et  al., 2012), and suggests that within 
the months of April and August 2000, 
daily pH at any one location can vary 
by more than 0.1 units (see online 
Supplemental Figure S1). 

MITgcm.Michigan also illustrates large 
pH variability (Figure  4). For April and 
August of 2008, the pH range at any loca-
tion is 0.35 and 0.25 units, respectively 
(Figure  4a,b). On a single day in either 
month, the maximum range is 0.35 units 
in April and 0.10 in August for the open 
lake outside of Green Bay (Figure  4c,d). 
Model results are consistent with pH 
estimated from in situ pCO2 observa-
tions and assumed constant alkalinity on 
the Lake Express ferry from Milwaukee, 
Wisconsin, to Muskegon, Michigan; 
away from direct coastal influences, pH 
can span up to 0.05 units in a single day 
(author Bootsma, unpublished data).

These models and data from 

Lakes Superior and Michigan are con-
sistent with observations in the coastal 
ocean, where there can be a large sea-
sonal variability in pH due to the inter-
play of physical and biogeochemical pro-
cesses (Hauri et  al., 2013). As a whole, 
these findings support the conclusion 
that substantial high-frequency pH vari-
ability occurs in Lakes Michigan and 
Superior, and presumably also in the 
other Laurentian Great Lakes. 

US EPA Biannual Survey 
Data from the US EPA are sparse in time 
across the annual cycle, but do have rea-
sonable spatial coverage for April and 
August. In each Great  Lake, these data 
indicate pH spans several tenths of a 
pH unit between stations, and the differ-
ence between April and August can be 
up to 0.5 pH units (not shown). Across 
the decades, there is substantial inter-
annual variability in the mean of April 
and August data (April–August mean, 
Figure  5). Though the mean estimates 
do suggest a positive trend in all lakes 
except Michigan, when the large uncer-
tainty is considered, only a few points can 
actually be distinguished from any other 
in its time series.

In Figure 5, pH trends from the IS92a 
carbon chemistry projections (Figure  2) 
are superimposed on the observed esti-
mates (solid line). Estimated trends 
from CO2-induced acidification are very 

FIGURE  3. pH esti-
mated from observed 
pCO2 and constant alka-
linity in the western arm 
of Lake Superior near 
Split Rock Lighthouse 
(47.19°N, 91.34°W) from 
June 6, 2001, through 
September 11, 2001. See 
text for details.
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slight compared to the uncertainty in the 
observed record. If we ignore the large 
uncertainties and focus only on the mean 
estimates, the observed April–August 
mean pH appears to have a positive trend 
over time that contrasts to the projec-
tions that suggest a negative trend for 
annual average pH in all lakes. If these 
April–August mean data give a robust 
estimate of the annual mean surface pH, 
then we must conclude that air-water 
equilibration is not the dominant pro-
cess controlling the long-term trend in 
annual mean pH, and that the effects of 
CO2-induced acidification are not yet 
noticeable, given these other controls. 
This conclusion, however, hinges on the 
assumption that the April–August mean 
accurately represents annual mean pH.

We can use MITgcm.Superior 
and MITgcm.Michigan to assess 

the relationship between the April–
August mean pH from US EPA bian-
nual observations and annual mean pH. 
In this Observing System Simulation 
Experiment (OSSE), the models are sam-
pled in time and space at the correspond-
ing model grid cell of sites where data 
were collected. This “sampled” result 
is compared to the true annual aver-
age using all points in space across the 
full annual cycle (Figure 6). Uncertainty 
on the sampled model is only the spatial 
standard deviation (i.e.,  we ignore mea-
surement uncertainty here).

In Lake Superior for 1997–2001, the 
OSSE indicates that the spatial and tem-
poral distribution of the biannual obser-
vations leads to a positive bias of the 
April–August mean with respect to the 
annual average of up to 0.05 units, as well 
as substantially exaggerated interannual 

variability (Figure 6a). In Lake Michigan 
for 2007–2010, the April–August mean 
can have either negative or positive bias 
with respect to the annual average, consis-
tent with its exaggerated interannual vari-
ability. In both lakes, the uncertainty from 
the sampled estimates is large enough to 
obscure the interannual variability that 
actually occurred. These OSSEs indicate 
that the current monitoring of Great Lakes 
pH cannot resolve temporal trends at res-
olution sufficient to resolve acidification 
due to increasing pCO2

atmosphere.
Taken as a whole, these data and mod-

els support the conclusion that spatio- 
temporal variability in the Great Lakes is 
large enough that the long-term record 
from the US EPA April and August sam-
pling at 8–20 stations per lake does not 
accurately represent long-term annual 
average change in Great  Lakes pH. This 

FIGURE 5. Mean of April and August pH observations from US EPA biannual survey. Solid lines are the pH estimates for annual pH based on the IS92a 
emissions scenario of the carbon chemistry projection (Figure 2).
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result is compounded by the fact that the 
methodology used for the US EPA pH 
measurements has low precision (Dickson 
et  al., 2007). Nonetheless, the observed 
changes in April–August mean pH, 
despite their large uncertainty, are wor-
thy of further investigation to determine 
whether they are due to methodologi-
cal changes or to real phenomena such 
as secular trends in spring bloom timing. 
To reduce the large uncertainty in both 
monthly and annual mean pH, spatial 
variability must be better characterized 
and its driving mechanisms understood. 

Ecosystem Impacts
Impacts of CO2 acidification on the 
Great  Lakes have not yet been studied, 
but the ocean acidification literature may 
provide insight into potential effects. 
Studies in coastal and estuarine environ-
ments likely have particular relevance 

to the Great  Lakes as they are simi-
larly affected by a suite of anthropogenic 
stressors; their carbonate chemistry is 
influenced by biological responses to 
nutrient delivery by rivers, groundwater, 
and the atmosphere (Borges and Gypens, 
2010); and spatiotemporal variability is 
large (Hauri et  al., 2013). Coastal ocean 
acidification can also be significantly 
modified by interactions with other nat-
ural and anthropogenic forcings (Feely 
et al., 2008; Cai et al., 2011) to accelerate 
local declines in pH and saturation states.

Studies of the impacts of ocean acid-
ification on calcification have particu-
lar significance for Great  Lakes bivalves, 
including native unionids and the inva-
sive dreissenids, zebra (Dreissena 
polymorpha) and quagga (D. rostriformis 
bugensis) mussels whose shells are made 
up primarily of aragonite, which is more 
soluble than the predominantly calcite 
shells of marine bivalves (Mucci, 1983). 
The metabolism of sodium and calcium 
in dreissenids may be particularly sen-
sitive to acidification because dreisse-
nids are recent immigrants from the sea 
(Vinogradov et  al., 1987). Juvenile zebra 
mussels only grow when the water’s pH 
is greater than 8.3 (Hincks and Mackie, 
1997), and a pH near 7.4 is lethal for the 
veliger stage (Mackie and Kilgour, 1994). 
Our projection for Great Lakes mean pH 
under the IS92a and A1FI scenarios ranges 
from 7.65 to 8.20 by 2100 (Figure 2a), and 
the spatial heterogeneity is large enough 
that these lower thresholds will likely be 
achieved, at least in some locations.

 While our understanding of the role 
of dreissenids within Great  Lakes bio-
geochemical cycles and trophic ecology 
is incomplete, they appear to be key play-
ers within these systems. In the pelagic 
zone, they have altered trophic dynam-
ics by removing a significant fraction 
of phytoplankton from the water col-
umn (Fahnenstiel et al., 2010), which in 
turn has impacted energy flow to higher 
trophic levels (Nalepa et  al., 2009). 
Reductions in phytoplankton abundance 
have resulted in improved water clarity, 
which has led to a resurgence of nuisance 

algae such as Cladophora spp. (Auer 
et al., 2010). Any changes in the popula-
tion dynamics, health, and calcification 
of dreissenids will likely have cascading 
impacts on noncalcifying species. 

DISCUSSION AND CONCLUSIONS
Under the assumption of lake pCO2 
equilibration with pCO2

atmosphere through 
2100 and a business as usual emis-
sion scenario, pH in the Laurentian 
Great  Lakes is projected to decline by 
0.29–0.49 units by 2100 (Figure 2a), sim-
ilar to predictions for the surface ocean 
(Orr et al., 2005). A survey of the scien-
tific community also illustrates broad 
concurrence that acidification is likely 
(Box  1). Yet, the evidence from obser-
vations and models that we present here 
indicates that current monitoring is 
insufficient to determine whether long-
term changes in pH are actually occur-
ring. There is a need to establish a pH 
monitoring program in the Laurentian 
Great  Lakes designed to determine if 
long-term, but relatively gradual, pH 
trends driven by increasing pCO2

atmosphere 
are occurring. The NOAA Ocean and 
Great  Lakes Acidification Research Plan 
(NOAA Ocean Acidification Steering 
Committee, 2010) laid out a plan for this 
type of monitoring, but implementation 
has not yet begun.

In the Laurentian Great  Lakes, pH 
data can be obtained from both auton-
omous sensors on moorings and vol-
unteer observing ships, and such data 
should be combined with calibration sur-
veys (Fabry et al., 2008; Read et al., 2010). 
Autonomous pH sensors with accu-
racy of ±0.002 pH units (Dickson et  al., 
2007) are needed. Complementary pCO2 
observations would be of great use to 
characterize the CO2 system more fully 
spatially and temporally. Better quanti-
fication of whole-lake carbon and alka-
linity budgets is also needed in order 
to provide the mechanistic basis with 
which observed pH variability and trends 
can be understood. Following proto-
cols established for marine research 
(Dickson et  al., 2007; Riebesell et  al., 

FIGURE  6. Observing System Simulation 
Experiment for (a) Lake Superior and 
(b) Lake Michigan. Surface pH from stations 
as sampled by US EPA and annual average  
from MITgcm.Superior and MITgcm.Michigan. 
Uncertainty on the sampled estimate is only 
from the spatial standard deviation across the 
sampled points in each month.
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Responses to Question 3

Strong 
negative 
impact

Weak 
negative 
impact

Neutral 
or no 

impact

Weak 
positive 
impact

Strong 
positive 
impact

Unsure

Water quality 5% 52% 25% 0% 1% 16%

Water clarity 0% 14% 32% 28% 3% 24%

Primary productivity 5% 35% 16% 20% 3% 20%

Biodiversity 8% 46% 23% 4% 0% 20%

Ea
rly

 L
ife

 S
ta
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s Native amphipods 13% 34% 25% 0% 0% 29%

Calcifying organisms 
(including mussels)

33% 47% 8% 4% 0% 9%

Macroalgae 6% 25% 22% 23% 1% 23%

Fish 8% 29% 34% 4% 0% 25%

A
du

lt 
St

ag
es

Native amphipods 6% 37% 28% 3% 0% 27%

Calcifying organisms 
(including mussels) 29% 46% 11% 4% 0% 10%

Macroalgae 3% 30% 24% 20% 1% 22%

Fish 4% 30% 37% 3% 0% 27%

Question 1
Survey participants were first asked Question 1: In your opin-
ion, are the Laurentian Great  Lakes likely to experience a 
drop in pH as atmospheric CO2 rises (i.e., analogous to ocean 
acidification)? Responses from 89 scientists, shown below, indi-
cate that most scientists agree that acidification should occur.

Responses to Question 1

Yes 

No  

0 20 40 60 80 100% 

0 20 40 60 80 100% 

Yes 

No 

Question 2
Next, respondents were shown projections for Lake Superior 
and global ocean declines in pH under IPCC emission scenar-
ios (Meehl et al., 2007), both of which were similar to Figure 2a, 
and asked Question 2: Please examine the following projec-
tions from a simple model for Lake Superior under six IPCC 
Special Report on Emission Scenarios (SRES) and the IS92a 
emission scenario, and compare them to published projections 
for the surface ocean. Based on these figures, do you think the 
Laurentian Great Lakes are likely to experience a drop in pH as 
atmospheric CO2 rises (i.e., analogous to ocean acidification)? 
Responses from 85 scientists, shown below, indicate a slight 
increase in the confidence that acidification should occur.

Responses to Question 2

Yes 

No  

0 20 40 60 80 100% 

0 20 40 60 80 100% 

Yes 

No 

Given the unknowns about impacts of acidification on lakes, we 
conducted a survey of Great Lakes scientists. Similar approaches 
have been employed to discuss uncertainties in the global climate 
system (Zickfeld et al., 2010) and to assess ecosystem vulnera-
bility to ocean acidification in the California Current (Teck et al., 
2010). We developed a three-question survey and addressed it 
to active Great  Lakes scientists. The pool of potential respon-
dents consisted of 371 research scientists from government 

agencies, universities, consulting firms, and nonprofit organiza-
tions. Experts were identified using Web of Science to search 
the phrase “Great Lakes” and key words associated with poten-
tial stressors. Individual scientists contacted collectively pos-
sessed a wide breadth of knowledge and experience with techni-
cal Great Lakes issues (Sigrid Smith, University of Michigan, pers. 
comm., November 30, 2011). Eighty-nine (89) scientists responded 
to the survey, with most answering all questions.

Question 3
Finally, survey participants were 
asked Question 3: If the Great Lakes 
are acidified by increasing atmo-
spheric CO2, how might some organ-
isms or ecological conditions be 
affected? Please rank the options 
on the given negative to positive 
scale. Responses from at least 79 sci-
entists, shown on the right, indicate 
most confidence with respect to neg-
ative impacts on water quality, bio-
diversity, and both early and adult life 
stages of calcifying organisms.

Box 1. Survey of Great Lakes Scientists
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2010), but modified for freshwater, will 
help to align the Great  Lakes research 
community with the ocean acidification 
research community. 

Impact assessments will also be needed 
for freshwater systems. They can be per-
formed using laboratory manipulations, 
mesocosms, and in situ CO2 perturba-
tion experiments (Fabry et al., 2008). For 
the Laurentian Great  Lakes, one partic-
ular genus that should be studied across 
its life stages is the dreissenid mus-
sel, as these mollusks have significantly 
shaped the ecosystem since their invasion 
(Fahnenstiel et  al., 2010; Nalepa et  al., 
2010; Chapra et  al., 2012), greatly stress 
the already-declining native mussels, and 
make their shells out of aragonite. 

In this assessment, the multiple stress-
ors that are known to affect Laurentian 
Great  Lakes and other large freshwater 
system biogeochemistry, such as invasive 
species and eutrophication, have not been 
directly considered. The ocean acidifica-
tion literature and our recent survey of the 
Great Lakes scientific community (Box 1) 
suggest where research on organismal 
and ecological impact studies are most 
needed, keeping in mind that it will be the 
combined effects of CO2-induced acid-
ification and other drivers of change to 
which all freshwater ecosystems, large and 
small, will have to adjust (Breitburg et al., 
2015, in this issue). Like the coastal ocean, 
freshwater systems such as the Laurentian 
Great Lakes have the potential to be natu-
ral laboratories for monitoring change in 
carbonate chemistry and for better under-
standing of the complex interactions of 
numerous stressors (Feely et al., 2010). 

SUPPLEMENTARY MATERIALS. Supplemental 
Figure  S1 is available online at http://www.tos.org/
oceanography/archive/28-2_phillips.html.
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