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During DWH discharge, all available 
remote-sensing technology was mobi-
lized to support the monitoring efforts. 
As a result, an unprecedented amount 
of remote-sensing data was collected. 
Analyzing and interpreting these data 
remains a very active area of research 
that can expand synthetic aperture radar 
(SAR) oil spill response capabilities 
(Maurizio et al., 2012; Minchew et al., 
2012; Garcia-Pineda et al., 2013). In this 
paper, we examine SAR anomalies in 
floating oil discharged from the DWH 
and consider the evidence that they 
correspond to regions of oil emulsions 
within the overall layer.

Assessment of floating oil distribu-
tion is a crucial response function 
for all marine oil spills that depends 
heavily on remote-sensing data analy-
sis. Some remote-sensing techniques 
include optical, microwave, and radar 
sensors that can be set up on both air-
craft and satellites (Brekke and Solber, 
2005; MacDonald, 2010; Leifer et al., 

2012). In addition to SAR data, vis-
ible and near-infrared (NIR) spectra 
satellite imagery has also been used to 
delineate surface oil slicks in the ocean 
(MacDonald et al., 1993). Recently, 
the wider availability of the Moderate 
Resolution Imaging Spectroradiometer 
(MODIS) and MEdium Resolution 
Imaging Spectrometer (MERIS) data also 
made it possible to use these wide-swath 
(2,330 km and 1,150 km, respectively) 
satellite instruments for cost-effective 
spill monitoring in near real time (Hu 
et al., 2003, 2009). However, no single 
sensor can provide all the information 
needed for effective oil spill response 
management; each comes with its 
own advantages and disadvantages. 
Satellite remote sensing provides lower 
temporal and spatial resolution than 
airborne remote sensing; however, it is 
cost effective, offers an extensive over-
view of affected areas, and can be pro-
cessed more rapidly. 

SAR has been widely used to detect 
the presence or absence of oil slicks 
(Alpers and Hühnerfuss, 1988; Clemente-
Colón and Yan, 2000). Semi-automated 
routines developed for this purpose 
employ different image-processing algo-
rithms such as neural networks, adaptive 
thresholding, and fuzzy logic (Del Frate 
et al., 2000; Topouzelis et al., 2008; Mera 
et al., 2012). However, the lack of sea level 
verification of algorithm results has con-
strained opportunities for spill classifica-
tion. For example, natural oil seeps reli-
ably generate layers of floating oil useful 
for testing the effectiveness of algorithms, 
but their low discharge rates do not 
produce very thick oil-emulsion layers 
(De Beukelaer et al., 2003; Garcia-Pineda 
et al., 2010). Tanker spills often produce 
transient targets that are transported to 

Introduc tion
The blowout of the Deepwater Horizon 
(DWH) MC-252 well in the Gulf of 
Mexico caused the largest accidental 
offshore oil discharge in history, greater 
than either the Ixtoc-1 blowout off the 
coast of Mexico (Jernelöv and Lindén, 
1981) or the Exxon Valdez spill in 
Alaska (Xia and Boufadel, 2010). The 
DWH discharge started on April 20, 
2010, with the explosion and sinking 
of the DWH platform and continued 
through July 15, when the wellhead was 
capped. Oil remained on the sea surface 
for more than 100 days (McNutt et al., 
2011). Massive efforts were mobilized in 
response to this environmental disaster. 
The contingency activities directed to 
floating oil included the application of 
dispersants (by planes or vessels), skim-
ming, booming, and in situ burning. To 
coordinate these emergency response 
activities (inshore or offshore), detec-
tion and prediction of the state and 
fate of the oil was a crucial daily task. 

Abstr ac t. Detection of oil floating on the ocean surface, and particularly thick 
layers of it, is crucial for emergency response to oil spills. While detection of oil on 
the ocean surface is possible under moderate sea-state conditions using a variety of 
remote-sensing methods, estimation of oil layer thickness is technically challenging. 
In this paper, we used synthetic aperture radar (SAR) imagery collected during the 
Deepwater Horizon oil spill and the Texture Classifier Neural Network Algorithm 
(TCNNA) to identify the spill’s extent. We then developed an oil emulsion detection 
algorithm using TCNNA outputs to enhance the contrast of pixels within the oil slick 
in order to identify SAR image signatures that may correspond to regions of thick, 
emulsified oil. These locations were found to be largely consistent with ship-based 
observations and optical and thermal remote-sensing instrument data. The detection 
method identifies regions of increased radar backscattering within larger areas of oil-
covered water. Detection was dependent on SAR incident angles and SAR beam mode 
configuration. L-band SAR was found to have the largest window of incidence angles 
(19–38° off nadir) useful for detecting oil emulsions. C-band SAR showed a narrower 
window (20–32° off nadir) than L-band, while X-band SAR had the narrowest window 
(20–31° off nadir). The results suggest that in case of future spills in the ocean, SAR 
data may be used to identify oil emulsions to help make management decisions.
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shore relatively quickly. In this context, 
the DWH discharge was unique because 
it generated floating oil layers over a vast 
area, and spill thickness and weather-
ing history varied. The long duration of 
the event allowed these features to be 
imaged repeatedly by SAR and other 
satellite instruments. Numerical circula-
tion models further helped predict spill 
trajectories during DWH operations (Liu 
et al., 2011). The combination of a variety 
of remote-sensing instruments, such as 
SAR, MODIS, MERIS, and aerial thermal 
imagery, provided timely information on 
the location and size of surface oil slicks 
(Leifer et al., 2012). However, to date, the 
most technically challenging aspect of oil 
spill remote sensing is not detecting oil 
presence or absence, or oil slick size, but 
quantifying oil slick thickness or volume 
(Minchew et al., 2012). 

The wide occurrence of thick, emul-
sified oil during the DWH discharge 
created opportunities for studying 
this material in a real-world setting. 
For example, analysis of Uninhabited 
Aerial Vehicle Synthetic Aperture Radar 
(UAVSAR) data by Minchew et al. (2012) 
showed that SAR can detect oil emul-
sions as long as the effect on total radar 
backscatter can be distinguished from 

the effect of wave tilt and surface rough-
ness. There was also direct observation 
and measurement of layer thickness. 
Targeting of response efforts like burning 
boom operations and aerial dispersant 
applications offered additional confirma-
tion of thick oil concentrations. In this 
study, we attempt to identify oil emul-
sions with L-, C-, and X-band SAR data 
using single polarimetric SAR, generally 
with VV-polarization, as well as other 
satellite and airborne measurements. 
We verify these results by comparing 
them to independently identified regions 
of thick oil and sea truth sampling of 
oil emulsions during expeditions led 
by Florida State University (http://
deepwaterhorizon.fsu.edu/tracking.php) 
and Norwegian SINTEF Group (http://
www.sintef.com) scientists. 

MATERIALS AND METHODS
Principle of Detecting Floating 
Oil Using SAR 
Radar uses microwave radiation to detect 
the range, speed, and other characteris-
tics of remote objects (Knott et al., 2004). 
Active satellite imaging, such as SAR, 
detects the interaction between different 
Earth surfaces and microwaves; an image 
is formed by transiting the antenna along 

a fixed path (synthetic aperture). From 
the full range of microwave frequency 
bands (Figure 1), most SAR satellites use 
L-, C-, and X-bands to image land and 
ocean surfaces. These frequencies have 
been chosen by satellite operators based 
on the number of applications they offer 
and their capability to detect different 
geophysical processes (Clemente-Colón 
and Yan, 2000). Three main compo-
nents dominate the return of energy 
to a SAR satellite from Earth’s surface: 
(1) the geometry between the relative 
positions of the satellite and the surface 
imaged (i.e., directional spectra of waves 
and beam incidence angles), (2) surface 
roughness, and (3) the dielectric 
properties of the surface materials 
(Alpers and Espedal, 2004).

Over land, the heterogeneity of a SAR 
image is dominated by energy reflected 
from the local topography, which is 
generally highly heterogeneous and 
highly conductive. For ocean imaging, 
the energy detected by the SAR antenna 
is strongly influenced by radar cross 
section (RCS). As Knott et al. (2004) 
describe, RCS is a measure of the power 
scattered in a given direction when a 
target is illuminated by an incident elec-
tromagnetic wave. RCS is normalized to 

TerraSAR-X
COSMO-SkyMed

RADARSAT 1-2
Envisat
SENTINAL

ALOS
UAVSAR

Figure 1. Microwave frequency 
and wavelength range for 
synthetic aperture radar (SAR) 
instruments/satellites. In 
contrast, optical and infrared 
satellites and aerial sensors 
(e.g., MODIS, MERIS, Landsat, 
and OI Thermal) operate in 
a narrower range of wave-
lengths using solar radiation to 
detect floating oil. 

http://deepwaterhorizon.fsu.edu/tracking.php
http://deepwaterhorizon.fsu.edu/tracking.php
http://www.sintef.com
http://www.sintef.com
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the power density of the incident wave at 
the target so that it does not depend on 
the distance of the target from the illu-
mination source. As the energy incident 
angle increases (with respect to nadir), 
RCS also increases, and less energy per 
unit area is reflected back to the satellite 
(Holt, 2004). This effect produces SAR 
ocean images with a gradient of decreas-
ing brightness from the near-nadir to 
the far-nadir sides of the image. As is 
the case for photography, the normal-
ized RCS (NRCS) derived from SAR 
depends on the observed scene as well 
as the conditions of observation, which 
are affected by the sea surface rough-
ness. RCS is also affected by the specific 
SAR system configuration, including its 
frequency, polarization, sensor velocity, 
pulse repetition frequency and duration, 
chirp bandwidth, and RCS normaliza-
tion. An image of the sea surface typi-
cally shows local variation in roughness, 
which is a function of wind waves and 
swell. Surface oil modulates fine-scale 
roughness and enhances specular reflec-
tion from the seawater surface under 
the oil. This results in a signal that is 
locally less intense than that from sur-
rounding oil-free water, thus making the 
oil slick in SAR imagery appear darker 
than the water. 

The following dispersion equation 
generally governs physical processes 
mentioned above:

w2 = gk +     k3 ρ
φ

,
	

(1)

where w is the angular frequency of the 
ocean wave, g is the gravity acceleration, 
φ is the surface tension, ρ is the water 
density, and k is the surface wave number 
(Valenzuela, 1978; Huehnerfuss et al., 
1983). This relationship clearly shows 
that gravity force governs long waves and 
swell, in contrast to the very short waves 
related to surface tension, which are 

usually generated by wind (Franceschetti 
et al., 2002). Swell and wind-driven waves 
generate tilted, slightly rough facets, 
which are the primary Bragg scatterer 
on the ocean’s surface. As Minchew et al. 
(2012) describe, these perturbations pro-
duce polarized backscatter from ocean 
waves of wavenumber 

kB = 2kr sinθ,	 (2)

where kr is the radar wavenumber and 
θ is the incidence angle. The following 
gives the radar incidence angle θi relative 
to the tilted facet:

θi = cos–1[cos(θ + β) cos(δ)],	 (3)

where β is the angle between the verti-
cal and the projection of the tilted facets 
normal to the scattering plane, and δ is 
the angle between the vertical and the 
projection of the tilted facets perpendic-
ular to the scattering plane. The major-
ity of the SAR satellite data collected 
during the DWH oil spill was available 
in VV-polarization, which is preferred 
because larger RCS from the sea surface 
yields larger differences between the 
images of oil slicks and non-oiled sea 
surface (Valenzuela, 1978). The dielectric 
permittivity of a SAR-imaged surface 
is a measure of the polarization field 
induced in the surface’s material result-
ing from the application of an external 
electric field. The external field is gener-
ally time-dependent. At the limit of zero 

frequency, the surface’s material property 
ε is often called the dielectric constant 
(May et al., 2008). In this regard, the 
relationship between the VV-polarized 
Bragg scattering coefficients given by the 
incidence angle and the dielectric con-
stant of different oil emulsions is

Rvv =
(εr – 1){sin2(θi) – εr [1 + sin2(θi)]}

(εr cos(θi) +    εr – sin2(θi))2
, (4)

where εr is the relative dielectric con-
stant of the imaged surface (Minchew 
et al., 2012). Therefore, the dielectric 
properties of the surface also influ-
ence the SAR ocean image. Seawater 
has very high conductivity, while oil 
has low conductivity, and the potential 
contrasts in Bragg scattering properties 
should be noted. Floating oil is highly 
heterogeneous depending on oil type 
and weathering history (Fingas and 
Fieldhouse, 2012). Over time, floating oil 
layers form durable emulsions with sea-
water (we discuss the characteristics of 
oil emulsions and their effect on energy 
return in a later section). Fundamentally, 
water-in-oil and oil-in-water emulsions 
(w/o and o/w) have higher conductivity 
and, hence, a Bragg scattering coeffi-
cient that is intermediate between water 
(very high) and unemulsified oil (very 
low). We hypothesize that this effect will 
permit detection of emulsified oil over 
larger regions of floating oil within a 
range of SAR incident angles. 
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A number of techniques have been 
developed to determine phase fractions, 
electrical conductivity, or dielectric 
permittivity of o/w and w/o emulsions 
(May et al., 2008). The dielectric char-
acterization of DWH oil emulsions is 
beyond the scope of this paper. Thus, 
the example presented next is intended 
as a hypothetical case. Using equation 4, 
Figure 2 shows the Bragg scattering coef-
ficient as a function of incidence angle 
for three sea surfaces: (1) unemulsi-
fied oil (εr ~ 2), (2) seawater (εr = 80), 
and (3) an oil emulsion (εr = 40). The 
values assigned for relative permittivity 
are theoretical and only for illustrative 
purposes. This hypothetical relation-
ship suggests that an increment on the 
dielectric constant of the imaged surface 
by SAR will produce a direct increment 
on the Bragg scattering coefficient. It fol-
lows that if a region of thin oil contains a 
patch of emulsified oil, Bragg scattering 
should be locally stronger. Detection of 
this contrast would indicate where the 
patches of emulsified oil were located. It 
is important to point out that no matter 
how thick an emulsion is, the backscatter 
would not support a direct measurement 

of emulsified or unemulsified oil thick-
ness, but only the presence or absence of 
an oil emulsion. 

Detection of Floating Oil Using 
Optical Remote Sensing
Floating oil layers can also be detected in 
optical images, especially under certain 
illumination conditions (Hu et al., 2003, 
2009), because oil has different optical 
properties (absorption, scattering, refrac-
tion index) than water and because oil 
modulation of surface roughness can 
redistribute specular reflection of sun-
light (sunglint). Figure 3 shows a portion 
of a SAR image collected on May 24, 
2010, by the Advanced Land Observing 
Satellite (ALOS; an L-band SAR) and 
a red-green-blue image collected by 
MERIS on the same day two hours ear-
lier. As in SAR images, although the opti-
cal contrast in MERIS images between 
oil slicks and surrounding waters makes 
detecting the presence or absence of 
surface oil straightforward, with some 
a priori knowledge of the spill location, 
quantifying oil volume or characterizing 
oil into different thickness classes still 
remains a significant technical challenge. 

Most published works rely on labo-
ratory experimental results to develop 
classification schemes (Clark et al., 2010; 
Svejkovsky et al., 2012), but there are no 
reports on how to classify the multiband 
MERIS or MODIS data to differenti-
ate oil thickness. Preliminary analysis 
showed correlation between oil thickness 
determined from hyperspectral Airborne 
Visible/Infrared Imaging Spectrometer 
(AVIRIS) measurements, using the Clark 
et al. (2010) algorithm, and MODIS 
reflectance in the near infrared and 
shortwave infrared for oil slicks under 
strong sunglint where all oil slicks show 
positive contrast against a water back-
ground (recent work of author Hu). 
Under such circumstances, emulsified oil 
appears brighter than the surrounding 
thinner oil. When sunglint is negligible, 
thick oil emulsion also appears brighter 
than oil sheen in the near-infrared wave-
lengths. When sunglint shows strong 
gradients, some oil slicks under relatively 
weaker sunglint may appear darker than 
the surrounding water (Hu et al., 2009; 
Jackson and Alpers, 2010), making it 
more difficult to differentiate oil thick-
ness classes. In any case, a human analyst 
is required to interpret optical imagery 
because there is currently no general-
ized rule that can be applied blindly to 
classify oil slicks. 

Weathering of Floating Oil and 
Effects on SAR Detection
When crude oil is discharged into the 
ocean, it reacts dynamically with biologi-
cal, physical, and chemical processes. 
On the surface, the collective result is 
known as “weathering” of the oil (Fingas, 
2004). Weathering processes include 
spreading, evaporation, dissolution, 
dispersion, photochemical oxidation, 
emulsification, sinking, biodegradation, 
adsorption to suspended matter, and 

Figure 2. Bragg scattering coefficient for VV-polarization (RVV) calculated for three different sea 
surface conditions covered by: unemulsified oil, emulsified oil, and seawater (Equation 4).
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deposition onto the seafloor (Fingas 
and Fieldhouse, 2012). 

After spreading, the light volatile com-
ponents of crude oil begin to evaporate 
and the remainder begins to emulsify. 
The rate of evaporation depends upon the 
vapor pressure and the volatile compo-
nents present in the crude oil. Previous 
studies show that oil layer thickness can 
significantly impact the rate of oil evapo-
ration (Brekke and Solber, 2005). Further, 
the remaining concentrated portion of 
crude oil mixes with surface seawater 
under the influence of wind and wave 
action to form an emulsion (Thibodeaux 
et al., 2011). An emulsion may be defined 
as a colloidal mixture of two immis-
cible fluids, one being dispersed in the 
other in the form of droplets (Fingas 
and Fieldhouse, 2012). For a w/o emul-
sion, the oil is the continuous phase and, 
consequently, the electrical conductiv-
ity of the emulsion is negligible. For an 
o/w emulsion, water is the continuous 
phase and, in seawater, the bulk electrical 
conductivity of the o/w emulsion is large 
(~ 10 S m–1) compared to pure oil, which 
is an electric insulator (May et al., 2008). 

Oil emulsions may be extremely stable 
because the water droplets (1–10 µm 
diameter range) are held in a semirigid 
structure by asphaltenes, waxes, and res-
ins, or similar components (Fingas and 
Fieldhouse, 2012). The inclusion of water 
in the crude oil emulsion is an important 
step in the weathering process because 
it increases the volume and viscosity of 
the emulsion and changes its dielectric 
constant. Emulsions can also seriously 
impact coastal activities by creating 
hazardous conditions and nuisances on 
the shore (Atlas and Hazen, 2011), so 
detection of emulsion patches is often a 
priority in oil spill response. Absorption 
and Bragg scattering of the SAR electro-
magnetic pulse responds to variations in 

electrical conductivity. Our hypothesis 
is that due to an increase in electrical 
conductivity (absolute permittivity) and 
volumetric scattering, as well as altered 
surface texture, thick patches of floating 
emulsions will scatter SAR energy more 
effectively than a thick layer of fresh 
unemulsified oil, which would work as an 
electric insulator, or than a thin layer of 
unemulsified oil, which normally damps 
capillary waves and makes the sea surface 
act as a specular reflector. Similarly, thick 
patches of pure crude oil (unemulsi-
fied) would be undetectable by SAR if 
saltwater were not mixed with surface oil 
because surface conductivity would be 
the same as for a thin layer of oil. 

Algorithm Development 
Nearly all SAR applications of oil spill 
monitoring have relied on visual con-
trast to detect the presence or absence of 

surface oil slicks, based on the principles 
outlined above (Fingas and Brown, 1997; 
Clemente-Colón and Yan, 2000; Alpers 
and Espedal, 2004; Holt, 2004). Various 
segmentation techniques have been 
proposed. One of them, the Textural 
Classifier Neural Network Algorithm 
(TCNNA), employs a combination of 
edge detectors and texture statistical 
descriptors to detect floating oil. This 
algorithm produces a pixel by pixel delin-
eation of oil slick boundaries, regardless 
of the local brightness and contrast in 
the SAR image (Garcia-Pineda et al., 
2009, 2013). Using semi-automated 
TCNNA routines, we processed as geo-
tiffs 454 SAR scenes provided by the 
National Oceanic and Atmospheric 
Administration (NOAA), and we selected 
172 scenes that imaged oil under the best 
range of weather conditions. This data 
set included images collected by satellites 

Figure 3. SAR image on May 24, 2010, showing dark features near the Deepwater Horizon oil platform 
that are thought to be surface oil slicks. Image collected by the Advanced Land Observing Satellite 
(ALOS, which is L-band). The Mississippi Delta of Louisiana appears on the top left side of the image. 
The lower right inset shows a red-green-blue (RGB) image collected by MERIS two hours earlier 
under severe sunglint conditions. An oil slick in optical imagery under sunglint can appear either 
brighter or darker than the nearby water, depending on the viewing geometry (Hu et al., 2009). 
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operating in C-, L-, and X-bands in the 
microwave spectral range from April 25, 
2010, to July 12, 2010 (Table 1). To map 
the spatial coverage of our data set, the 
172 TCNNA outputs were intersected 
and gridded in equidistant 5 km grids. 

Using the SAR data set and the delineated 
surface oil expression maps, we devel-
oped a prototype oil emulsion detection 
algorithm (OEDA). 

Each of the delineated oil maps 
obtained with TCNNA was used to 

normalize the effect of the SAR inci-
dence angle and the regional weather 
conditions. Although the incidence angle 
and Bragg scattering dependence is well 
known, we needed to normalize each 
SAR frame independently to normal-
ize the influence of the regional weather 
conditions among images captured at 
different times. Approximately 200 loca-
tions outside the oil slick polygon were 
sampled at different incidence angles 
for each image (outside the oil bound-
ary defined by TCNNA). As an example, 
Figure 4 shows the boundary of the oil 
slick delineated by TCNNA for the SAR 
image shown in Figure 3. The green 
squares outside the yellow outline show 
the locations of sampling pixels and 
bounding boxes that represent the clean-
sea pixels used to normalize the image, 
as shown below. All pixel values and 
their relative locations in the image (in 
reference to the instrument’s incidence 
angle) were stored for two bounding 
boxes that measured 25 × 25 pixels and 
13 × 13 pixels (green boxes in Figure 4). 
To characterize the textural conditions 
of the sea surface roughness (produced 
by local weather conditions) in each 
of the bounding boxes, we computed 
four texture descriptors characterizing 
the average, third moment, entropy, 
and uniformity of the bounding boxes, 
as described in Gonzalez et al. (2004). 
The third moment, 

µ = ∑ (zi – m)3 p(zi),
L – 1

i = 0 	
(5)

measures the skewness of the histogram 
for the NRCS values, where µ is the 
mean (pixel average) intensity, zi is the 
pixel value, p(zi) is the histogram of the 
intensity levels in the bounding box, 
and L is the number of possible intensity 
levels; this measure is 0 for symmetric 
histograms, positive for histograms 
skewed to the right (about the mean), 

Figure 4. Delineation of oil (yellow) produced by the Texture Classifier Neural Network Algorithm 
(TCNNA) for the SAR image in Figure 3. Green squares indicate sampling locations of clean-sea pixels 
and bounding boxes. Bounding boxes are employed to statistically assess regional sea surface rough-
ness conditions using the texture descriptors of Gonzales et al. (2004). The blue box shows the ana-
lyzed region reproduced in Figure 6. DWH indicates the location of the Deepwater Horizon oil rig.

Table 1. Summary of 172 synthetic aperture data sets assessed for oil  
emulsion detection during the Deepwater Horizon oil spill. A subtotal of 44 images  

provided results that were suitable for algorithm development.

Band Satellite Number of Images
Operating 

Incidence Angles

C-Band

RADARSAT-1 29 20°–50°

RADARSAT-2 27 20°–50°

Envisat 37 15°–45°

ERS-2 2 20°–26°

X-Band
COSMO-SkyMed 59 20°–59°

TerraSAR-X 7 20°–45°

L-Band ALOS 11 18°–43°

Total Number of Images 172  
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and negative for histograms skewed to 
the left. Entropy derived by 

e = – ∑ p(zi) log2 p(zi),
L – 1

i = 0 	
(6)

is a descriptor of the randomness in the 
bounding boxes around the pixel sam-
pled. Uniformity, derived by 

U = ∑     p2(zi),
L – 1

i = 0 	
(7)

reaches its maximum when all gray lev-
els are equal (maximally uniform) and 
decreases from there. All the measure-
ments were rescaled to 8 bits (0–255). 
The mean (pixel average) of the bound-
ing box was then plotted and used to 
fit a quadratic equation (QE) for all 
the pixels sampled. 

The process explained above was 
semi-automated and repeated to fit a 
QE for each of the 172 SAR images in 
our data set. As expected, the QE varied 
from SAR image to SAR image because 
Bragg scattering depends not only on 
wavelength (C-, L-, or X-band) and inci-
dent angle but also on wave tilt and wind 
conditions (see Figure 5 for an example). 

RESULTS
We confirmed that SAR can distinguish 
RVV signatures in portions of certain 
SAR images by applying OEDA routines. 
These targets are consistent with what 
would be expected for detection of float-
ing oil emulsions. The results were also 
consistent with sea level observations of 
thick, emulsified oil and suspected detec-
tion of emulsions by other sensors. We 
also confirmed that even using the same 
beam-mode configuration (same resolu-
tion and incidence angle range) on the 
same satellite, the QE resulting from this 
normalization needs to be generated for 
each SAR image because of the differ-
ent sea state conditions. Figure 5 shows 
examples of curves fitted for different 
Envisat SAR images that display oil in 

them. Incidence angles of these Envisat 
images had the same range (from 15° to 
45°). The trend lines were generated by 
sampling pixels under different weather 
conditions: strong winds (average of 
9 m s–1, ranging from 5 to 12 m s–1), ideal 
winds (average of 5 m s–1, ranging from 
4 to 7 m s–1), and low winds (average 
of 3 m s–1, ranging from 2 to 8 m s–1). 
Wind values were validated using the 
Cross-Calibrated Multi-Platform Ocean 
Surface Wind Vector L3.0 available at 
http://podaac-opendap.jpl.nasa.gov. Each 
beam mode in each satellite produces its 
own image configuration (pixel resolu-
tion, incident angle range); thus, different 
equalization polynomials are required for 
different beam modes as well.

The clean-pixel-derived QE was 
applied to the TCNNA-determined 
oil pixels to generate a new normal-
ized Bragg scattering raster image, 
which was then stretched using a sec-
ond standard deviation function to 

increase the image contrast. Next, we 
used OEDA to more clearly observe 
the oil emulsions and other signatures 
inside the oil slick. Figure 6 shows an 
example before (Figure 6A) and after 
(Figure 6B) processing for the May 24, 
2010, image. Oil emulsions look much 
brighter and exhibit higher contrast after 
this treatment.

Using the OEDA outputs, SAR signa-
tures interpreted as oil emulsions were 
converted to polygons in GIS software. 
The classified oil emulsion polygons were 
compared with concurrent (same day) 
thermal and optical imagery and aerial 
photography. All of the 172 SAR images 
were processed independently to obtain 
the OEDA output. Only 44 SAR images 
produced features that could be inter-
preted visually as oil emulsions similar 
to the example given above. Images 
with interpreted oil emulsions had low 
uniformity values (equation 7) and high 
values for entropy and third moment 

Figure 5. Examples of trend lines for equations fitted for “clean sea pixels” outside the oil slicks 
sampled from 11 SAR images with the full range of wind conditions collected by the C-Band SAR 
satellite Envisat during DWH operations. The horizontal axis represents the incident angle in 
the SAR image, while the vertical axis is the average pixel value in the bounding box. Rvv = Bragg 
scattering coefficient. o/w = oil in water.
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(equations 5 and 6) in the 25 × 25-pixel 
bounding boxes. This result suggests that 
images with more uniformly distributed 
Bragg scattering (pixel values) in larger 
areas are less likely to allow detection 
of signatures inside the oil. SAR images 
that contain intense speckle and higher 
variance on the pixel value distribu-
tion are more likely to allow detection 
of oil emulsions.

The flattening and contrast enhance-
ment achieved by this image processing 
approach produced a new normalized 
and stretched raster. The assumption is 
that increasingly higher pixel values in 
the new raster correspond to increas-
ingly thicker emulsions based on the 
following hypothesis: if oil is mixed with 
seawater and it weathers, creating an 
emulsion, the seawater will increase the 
effective absolute conductivity of the 
emulsion (with respect to surrounding 
unmixed oil) because the dielectric con-
stant of unemulsified oil is much lower 
than that of emulsified oil. Following this 
assumption, we threshold the bright-
est pixels in the new normalized and 
stretched OEDA raster to classify higher 
backscatter (with higher concentra-
tions of oil emulsion) features. Various 

threshold values could be determined 
from trial and error to assign relative oil 
emulsion concentration classes within 
the oil slick. We assigned different 
threshold values based on the signatures 
observed in aerial (thermal data and 
photography) and satellite imagery.

Comparison to Optical 
Remote-Sensing Imagery
OEDA results from the SAR imagery 
were compared to optical and thermal 
remote-sensing imagery under differ-
ent wind conditions. Figure 7A shows 
a subset of a SAR image collected by 
RADARSAT-2 (C-Band) on May 10, 
2010, at 23:53 UTC. A MODIS optical 
image (Figure 7B) was collected on the 
same day at 16:35 UTC, approximately 
seven hours before the SAR snapshot. 
The normalization of the SAR data by 
OEDA (Figure 7C) was downscaled 
to match the same pixel resolution as 
MODIS, and then was used to threshold 
pixel value intensities as shown in 
Figure 7D. Comparing the OEDA output 
with the optical image, we observed rela-
tive overall agreement in the directional-
ity and size of the signatures detected 
by the two different sensors that are 

thought to be thick oil emulsions, as well 
as some discordance in the observed 
signatures. In order to visually compare 
the two images, we assigned four cutoffs 
to the new raster pixel intensities, as 
represented in a red-yellow color map in 
Figure 7D. The brightest pixels in MODIS 
generally agree with the upper threshold 
pixels of the OEDA output (red areas on 
Figure 7D).These features identified simi-
larly in both sensors suggest that some 
of these signatures might correspond to 
layers of thick, unemulsified and emulsi-
fied oil. The time gap between the two 
image acquisitions also affected the rela-
tive position of the thick oil detected. 
Moreover, to quantify the agreement 
and disagreement between signa-
tures observed by both RADARSAT-2 
and MODIS, we randomly projected 
206 points on a rectangular area cover-
ing the oil slick (Figure 8). MODIS data 
are shown in the background, and the oil 
slick extent delineated by TCNNA on the 
RADARSAT-2 image is outlined in red. 
We then visually confirmed whether each 
of the points fell within clean seawater, 
within the oil slicks, and/or within a 
region of thick oil emulsions detected by 
either MODIS or OEDA. We evaluated 

Figure 6. Oil slick delinea-
tion (A) bounded by yellow 
outline and (B) QE normal-
ization for the same SAR 
image shown in Figure 3. 
The image collected by 
MERIS (C) approximately 
two hours earlier than the 
SAR image shows similar 
patterns and signatures 
made by oil features that are 
thought to be thick patches 
of oil emulsions. The feature 
followed by the black lines 
in B and C concur on loca-
tion, shape, size, and orien-
tation to the data collected 
by the two satellites. 
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response activities (Svejkovsky et al., 
2012). In the thermal IR range, both 
unemulsified and emulsified oil appear 
cooler than surrounding water when rel-
atively thin, and warmer than surround-
ing water when very thick. The probable 
reason for this is that during daytime, the 
thick oil film absorbs and re-emits solar 
heat. The positive thermal contrast thus 
increases with increasing oil thickness. In 
the case of oil emulsions (Figure 9), their 
water content reduces the thermal con-
trast effect so that emulsions with a water 
content of 50–60% require a thickness of 
10 to 15 times that of pure crude oil to 
exhibit the same thermal contrast magni-
tude (Svejkovsky et al., 2012). Emulsified 
oil targets having sufficient thickness 
to exhibit a positive thermal contrast 
of 4–5°C or more were imaged relative 

Figure 7. Comparison between (A) a RADARSAT-2 (C-Band) image collected on May 10, 
2010, at 23:53 UTC, and (B) a MODIS image collected the same day at 16:50 UTC, show-
ing the various oil contrasts under thin clouds. The image was generated as an RGB com-
posite. The bright features are thought to be from emulsified thick oil, while the dark 
features are thought to result from thinner oil films. (C) The same SAR image normalized 
to incident angle. (D) Oil emulsion detection algorithm (OEDA) classification output. 
A 6 km displacement was observed between the two satellite images (blue line in E). 

the accuracy of the two observations with 
a confusion matrix (Lewis and Brown 
2001); Table 2 summarizes the results. 

We observed that the number of 
points located inside the oil extent delin-
eated by TCNNA is higher. By visually 
comparing the red outline (TCNNA 
from RADARSAT-2) with the MODIS 
background, we determined that during 
the approximately six hours between the 
two acquisitions, the oil slick extended 
northward and eastward, increasing its 
area. We quantified 60 points located 
inside the boundaries of oil emulsions 
detected by OEDA versus 54 observed 
in areas where MODIS had the brightest 
pixel values. From this subset of 54 thick 
oil sampled points from MODIS, only 
37 points (68% of the 54) concurrently 
fell inside interpreted thick oil or oil 

Figure 8. Location of randomly generated points for qualitative 
evaluation of significance between OEDA and MODIS. 

Table 2. Results on the visual 
 interpretation of the 206 sampled points.

Oil Water Thick Oil

TCNNA on RADARSAT-2 107 99 60

MODIS 101 105 54

emulsion areas for both satellite images. 
We performed a Spearman correlation 
analysis to calculate the statistical depen-
dence between the two variables. We 
calculated a rank correlation coefficient 
of 0.71 with a corresponding p-value of 
.0013, which confirms a significant cor-
relation between the two observations. 

Comparison of Thermal 
Remote-Sensing Imagery From 
Aerial Overflights
During the DWH spill, Ocean Imaging 
Corp. (OI) conducted daily oil mapping 
flights over selected portions of the spill 
with the company’s multispectral aerial 
imager. The instrument had five channels 
spanning the visible to near-IR thermal 
range, and was used to quantify probable 
oil thickness distributions to aid various 
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Figure 9. Part of a thick emulsion feature photographed by Ocean Imaging Corporation on June 8, 
2010, that exhibited a positive thermal contrast of several degrees Celsius compared to surrounding 
water when imaged with a thermal IR camera as shown in Figure 10. Two ships (bright white) can be 
seen in the image.

frequently during OI flights. Ship-based 
sampling of some of these (usually 
elongated) emulsion patches revealed 
thicknesses up to several centimeters 
and water content in the 40–60% range 
(Belore et al., 2011). Figure 9 shows an 
oblique photograph of thick, emulsified 
oil taken by OI on June 8, 2010, where 
core areas exhibited a 3–5°C positive 
thermal contrast in the aerial thermal IR 
imagery on June 8, 2010 (so thermal con-
trast is also visible in the optical images). 
Figure 10 shows the thermal data over-
laid on a very-high-resolution (~ 3 m) 
TerraSAR-X image acquired two hours 
after the OI aerial imaging on June 8, 
2010, at 11:51 UTC. The SAR data show 
elongated features with high backscatter 
return signals that correspond closely in 
location, shape, and size to the high-tem-
perature thick emulsion features noted 
in the thermal OI data. This coincidence 
suggests that the SAR-sensed features 
also correspond to the probable thick 
emulsions. As described at Svejkovsky 
et al. (2012), the dark features observed 
on OI thermal data collected over the oil 
spill (Figure 10 inset) represent fresh oil 
untreated by aerial dispersants; the white 
signatures correspond to warm patches 
of thick oil emulsions.

Analysis of the 44 OEDA outputs that 
detected signatures thought to be oil 
emulsions shows that each of the SAR 
L-, C-, and X-bands appeared to be geo-
metrically constrained by the incidence 
angles within which oil emulsions could 
be detected. Preliminary results show 
that L-band SAR images have the largest 
window of incidence angles (between 
19° and 38° off nadir) that could allow 
detection of oil emulsions. C-band 
SAR images were found to have a nar-
rower window for oil emulsion detec-
tion (between 20° and 32° off nadir) 
than L-band. The X-band SAR had the 

Figure 10. Ocean Imaging Corp’s thermal imagery (inset on right) showing hot (white) elongated 
features corresponding to strands of thick oil emulsions. The TerraSAR-X image (main large image) of 
the same area was acquired on the same day. The SAR image reveals similar features of high (white) 
backscatter return. Dark signatures on the thermal image are thought to be thick unemulsified oil. 
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narrowest detection window (between 
20° and 31° off nadir). One possible 
explanation is that SAR wavelength is 
directly proportional to the radar’s pene-
tration depth: longer L-band waves pen-
etrate farther into a medium than shorter 
waves of C-band and X-band (Knott 
et al., 2004). However, our method could 
only be applied to a subset of the total 
available data (44 images from 172). This 
suggests that other factors (e.g., wind 
direction, polarization, oil in water emul-
sion ratio) may be limiting these ranges 
as well. SAR image calibration could 
also have a strong effect by reducing the 
radiometric resolution.

DISCUSSION
While oil presence or absence on the 
ocean surface is relatively easy to delin-
eate with use of semi-supervised pro-
cessing of SAR imagery, estimating oil 
thickness is more challenging. Sea level 
observation/validation remains the most 
conclusive method, but it is not practi-
cal over large areas. One remote-sensing 
approach is based on measuring thermal 
energy by IR sensors. Oil absorbs solar 
radiation differently from the ambi-
ent ocean and re-emits a portion of 
this energy as long-wave radiation in 
the infrared spectral band. Early stud-
ies report that IR sensors observe thick 
oil as hot spots, intermediate thick oil 
as cool, while thin oil is not detectable 
(Fingas and Brown, 1997). Some pre-
liminary results were obtained by using 
airborne measurements (e.g., Svejkovsky 
et al., 2012) that partially covered the 
extent of the slick along respective flight 
paths. A second approach relied on opti-
cal satellite imagery. The approach pre-
sented here demonstrates the potential of 
using SAR imagery for qualitative clas-
sification through examining variations 
of Bragg scattering due to changes in the 

conductivity and surface roughness of oil 
emulsions. Agreement among the results 
obtained with these techniques was 
encouraging, but not perfect.

There are several possible explanations 
for the agreements and discrepancies we 
observed. Thermal and optical imagery 
is sensitive to oil thickness, while SAR 
might only be sensitive to the presence 
or absence of oil emulsions (regardless 
of thickness). Another possible reason 
for the disagreement could be the single 
polarization used in many of the available 
SAR images. It is possible that by using 
fully polarimetric SAR, the agreement 
between optical and thermal observa-
tions and SAR images could be improved. 

The most likely cause of the structural 
characteristics delineated by OEDA 
was in the effect of emulsion formation 
and floating volume (i.e., thickness). 
Although this cannot be definitively veri-
fied over the entire areas of the images 
analyzed, it was possible to ground truth 
the OEDA anomalies where focused 
aerial dispersant missions and burn-
ing operations targeted thick oil layers 
based on direct responder observations. 
Figure 11 shows samples of oil emul-
sions collected during an expedition 
conducted by SINTEF in proximity to 
the DWH wellhead. The purpose of this 

sampling expedition was to identify 
slicks at different stages of weathering 
using spotter aircraft as well as surface 
sampling and physical characterization 
of emulsions from the slicks. The case 
reported here corresponds to a layer of 
emulsified oil sampled on June 3, 2010, 
approximately 12 nautical miles north of 
the DWH site. Based on visual inspec-
tions of the adsorbent pad samples 
made by SINTEF (SINTEF cruise report 
A16062), the thickness was approxi-
mately 2–4 mm. The emulsion was light 
brown/orange/reddish in color and 
appeared more elastic and less prone 
to spreading on the sea surface, which 
indicates that this slick had been heavily 
weathered (evaporative loss, emulsifica-
tion, and photo-oxidation). 

The availability of optical or thermal 
imagery approximately concurrent in 
time with OEDA outputs offers a unique 
opportunity to explore OEDA algorithm 
performance at different incidence angles 
and wind conditions. As expected, when 
different sensors collect two images at 
nearly the same time, greater agree-
ment on locations of thick oil emulsion 
signatures can be observed. Qualitative 
agreement was found for 44 SAR scenes 
and oil distribution signatures and pat-
terns observed in optical imagery from 

Figure 11. Oil film thickness sampling 
on June 3, 2010, using adsorption pads 
both for visual estimates and later for 
quantifying the amount of emulsion 
adsorbed to the pad in the SINTEF labo-
ratory. Image courtesy of SINTEF (http://
www.sintef.com)

www.sintef.com
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MODIS, MERIS, Landsat, and airborne 
thermal and optical imagery. Differences 
in size and distribution of classified thick 
oil patches could be due to the time gap 
between image acquisitions, the presence 
of unemulsified thick oil (undetectable 
by SAR), or other geophysical con-
straints for each sensor (e.g., sunglint, 
wind, polarization). Lab experiments 
currently underway at Florida State 
University will investigate the combined 
effect of wavelength and incident angle 
for detection of oil emulsions.

Overall, OEDA shows good potential 
for identification of thick patches of float-
ing oil for feature tracking and modeling 
efforts. In addition, the OEDA algorithm 
may offer valuable applications for many 
oil spill response operations. For exam-
ple, the ability to classify thick patches of 
oil emulsion can result in more effective 
targeting for skimming or burning opera-
tions. These operations typically require 
the knowledge of both oil presence and 
quantity and the oil’s trajectory in the 
ocean. Feature identification from SAR 
has important applications for oil spill 
trajectory modeling. The resulting maps 
provide important initial condition and 
validation data for these models. Typical 
oil spill models, in their simplest imple-
mentations, simulate the movement of 
oil on the ocean surface by tracking the 
movement of a large number of particles 
traveling at a velocity that is some combi-
nation of the ocean surface velocity and 
possibly surface wind (Salem and Kafatos 
2001). Particles can initially be placed 
in the domain based on maps of surface 
oil slicks, and additional particles can be 
added to the surface to simulate leaking 
oil. Although oil is a fluid, its treatment 
as discrete particles implies that each par-
ticle is representative of a certain quantity 
of oil. This requires knowledge (or often 
gross estimates) of the amount of oil 

reaching the surface from a leaking vessel 
or subsurface blowout, or of the thick-
ness of the oil covering a given area. For 
example, if it is assumed that the mean 
thickness of an oil slick is one micron 
and each particle represents 1 m3 of oil 
on the surface, then each particle would 
represent an oil slick of area of 1 km2. 
However, the thickness of an oil slick is 
definitely not uniform, and the thickness 
of a certain quantity of oil may change 
over time through spreading, emulsifica-
tion, or other processes. Thus, OEDA 
can be useful for tracking the thickness 
of a quantity of oil represented by a dis-
crete particle. Not only is the thickness 
of an oil slick important for interpreting 
simulated discrete particles as a surface 
oil slick, but oil thickness may also have 
implications for the dynamics of the oil 
spill. OEDA outputs can be very useful 
because oil drift models that are able to 
simulate oil thickness need to be initial-
ized with oil thickness distribution inside 
the oil spill. This information incor-
porated into initial fields will improve 
numerical predictions. 

CONCLUSION
The operating premise for OEDA devel-
opment is that there are radar backscat-
ter differences between emulsified and 
unemulsified oil due to an increment in 
absolute conductivity. Compared with 
different thicknesses of layers of unemul-
sified oil, oil emulsions have greater 
surface roughness and different electrical 
conductivity due to weathering processes. 
Therefore, given appropriate weather and 
instrument conditions, SAR satellites can 
detect regions of floating oil emulsions. 
It is important to point out that each 
beam mode in each satellite produces its 
own image configuration (pixel resolu-
tion, incident angle range), and there-
fore different equalization polynomials 

are needed for different beam modes. 
Further versions of the OEDA model 
need to incorporate wind and wave infor-
mation to produce more accurate nor-
malization and thresholding for oil emul-
sion detection. Nevertheless, the limited 
examples shown here, although prelimi-
nary in nature, demonstrate the potential 
of using SAR for classifying thick oil 
emulsions in the ocean environment. 
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