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Active Long-Lived Faults Emerging Along 
Slow-Spreading Mid-Ocean Ridges

B y  D ebora     h  K .  S m i t h ,  J av i er   E s c ar  t í n ,  Hans     S c h o u t en  ,  and    J o h nson     R .  Cann  

Oceanic Detachment 
Faults and Core Complex 
Formation 
In the classic mid-ocean ridge model, 
new seafloor is generated through a 
combination of magmatic diking feeding 
lava flows at the spreading axis, and 
the formation of short-offset, high-
angle normal faults that dip toward 
the axis. These processes lead to the 
formation of a layered magmatic crust 
and linear, ridge-parallel abyssal hills 
on both ridge flanks. This model of 
ocean crust generation applies well 

to fast-spreading mid-ocean ridges 
(i.e., > 80 mm yr–1), but it is not always 
valid at slower-spreading ridges. Instead, 
at slow-spreading ridges such as the 
Mid-Atlantic Ridge (MAR), which is 
opening at about 25 mm yr–1, the forma-
tion of long-lived faults (called detach-
ments) on one flank of the ridge axis is 
an important process in seafloor forma-
tion (Cann et al., 1997; Karson, 1999; 
MacLeod et al., 2009; Schroeder et al., 
2007; Smith et al., 2008; Tucholke et al., 
1998). In fact, active detachment faults 
have been identified along nearly half 

of the MAR axis between 12° and 35°N 
(Escartín et al., 2008). 

Continued extension on a single fault 
leads to significant flexural rotation of 
the fault block (Garcés and Gee, 2007; 
MacLeod et al., 2011; Morris et al., 
2009; Schouten et al., 2010). If exten-
sion continues for more than about 
5 km, continued rotation means that 
the exhumed fault surface becomes 
near horizontal from its initial dip of 
about 60° beneath the axis, and the 
seafloor domes as a result of regional 
isostatic compensation (e.g., Buck, 
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Figure 1. Cartoon showing two styles of faulting at a slow-spreading ridge. Faults are shown as subsurface black lines, and the footwall is marked. A normal 
fault forms, dipping at 60° beneath the axis. (a) In this panel, fault offset is 1 km, and the fault block has rotated outward away from the ridge axis by 18° to 
form an outward-facing scarp. (b) Continued faulting and extension brings lower crustal rocks to the seafloor and forms a “core complex.” In this panel, the 
fault offset is 16 km, and outward rotation of the top of the fault has increased to 36° to create a narrow linear ridge (LR) that marks the breakaway where the 
fault initially formed. The exposed footwall may be striated. (c) In this panel, no long-lived faults have formed. Instead, consecutive short-lived faults cut the 
lithosphere on the ridge flank to form classic abyssal hill topography. Red dashed line = spreading axis. Brown shading = crust that predates faulting. Green 
shading = material below the crust that is brought to the surface during core-complex formation.
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1988) to form a “core complex massif ” 
(Figure 1). Core complex massifs expose 
lower crustal and upper mantle rocks 
at the seafloor (e.g., Dick et al., 1981; 
Cann et al., 1997; Blackman et al., 1998; 
Tucholke et al., 1998; Escartín and 
Cannat, 1999; Karson, 1999; Cannat 
et al., 2006; Ildefonse et al., 2007). 
The surfaces capping core complexes 
often show distinctive striations that 
run parallel to the spreading direction 
(Figure 2). The detachment fault associ-
ated with an active core complex dips 
beneath the seafloor < 5 km from the 
spreading axis and roots beneath the axis 

(e.g., deMartin et al., 2007). 
Rather than forming only at the ends 

of spreading segments near fracture 
zones and other ridge-axis discontinui-
ties, as had been thought, several core 
complexes have been identified in the 
middle of spreading segments (Figure 2). 
Adjacent mid-segment core complexes 
may have resulted from movement along 
a single detachment fault (e.g., Smith 
et al., 2006, 2008; MacLeod et al., 2009; 
Reston and Ranero, 2011). Detachment 
faulting and the formation of core 
complexes may continue in a region 
for many millions of years, producing 

large fields of core complexes off axis 
(e.g., Okino et al., 2004; Cannat et al., 
2006; Smith et al., 2006, 2008; Schroeder 
et al., 2007; Reston and Ranero, 2011). 

The controls on the formation of 
oceanic detachment faults and core 
complexes remain poorly understood, 
but must differ significantly from those 
controlling extension when seafloor 
spreading occurs in the “classic” manner. 
It has been argued that detachment faults 
and associated core complexes begin as 
high-angle (dipping about 60°) faults 
beneath the spreading axis, just as classic 
shorter-offset faults do (e.g., Tucholke 
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Figure 2. (a) Bathymetry from the 13°N region of the Mid-Atlantic Ridge. 
Gray shading indicates two core complexes that have formed in the middle 
of a spreading segment. The box is the region interpreted in (b). Black 
lines indicate borders of the MAR axis, the tops of rotated faults, and 

schematic striations on core complexes. Basins that have formed during 
the outward rotation of the tops of the faults are marked B. (b) Line 

drawing of the bathymetry in the box in (a) showing striated core 
complexes and the tops of rotated faults. B’s indicate basins as 

in (a). At the spreading axis, axial volcanic ridges are outlined 
in black. Red areas indicate that volcanism occurs along 

the axis. The blue line locates the profile shown below. 
(c) Schematic profile across the southern core complex 
similar to the profiles shown in Figure 1. Striations on the 
exposed footwall are labeled. LR = linear ridge created by 
the outward rotation of the top of a fault. Faulted sections 
of brown-shaded material on the top of the core complex 
surface are rafted blocks of the median valley floor. 
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et al., 1998; Morris et al., 2009; Schouten 
et al., 2010; MacLeod et al., 2011). But 
why does one fault continue to extend 
for millions of years, rolling over to form 
a core complex, while another stops 
after extending for a relatively short 
time? Models examining the relationship 

between magma supply to the ridge axis 
and detachment fault formation have 
been put forward, many of which suggest 
that detachment faults form when 
magma supply is low (e.g., Buck et al., 
2005; Escartín et al., 2008; Tucholke 
et al., 2008; MacLeod et al., 2009; Olive 
et al., 2010; Schouten et al., 2010). This 
low magma supply model is still a matter 
of debate, however, because observa-
tions suggest that melt extraction from 
the mantle beneath the axis may be 
high during the evolution of detach-
ment faulting (e.g., Dick et al., 2000; 
Grimes et al., 2008). 

Detachment faults and core complexes 
are especially important because they 
expose at the seafloor deep-seated rocks 
formed beneath mid-ocean ridges, 
permitting investigation of oceanic 
lithosphere structure. They sustain both 
long-lived, high-temperature hydro-
thermal circulation and low-temperature, 
hydrogen-rich, serpentinite-related 

systems with associated mineral deposits 
and ecosystems. And, detachment faults 
and core complexes contribute substan-
tially to the formation of major expanses 
of the seafloor. For example, if close to 
50% of the northern MAR spreading axis 
(12°–35°N) is experiencing detachment 

faulting (Escartín et al., 2008), then up 
to 25% of new seafloor there may be 
composed of core complexes. In addition, 
ocean detachment faults provide impor-
tant comparisons for those who study the 
formation of continental core complexes 
(e.g., John and Cheadle, 2010). 

Seismicit y and Ac tive 
Detachment Faults
Between 1999 and 2003, six autono-
mous hydrophones were moored in the 
North Atlantic from 15°–35°N (North 
MAR study area marked on Figure 3a) 
to record the seismicity of the slow-
spreading MAR (Smith et al., 2002). 

The improved detection capability and 
earthquake location accuracy of the 
hydrophone array, compared to land-
based teleseismic networks, provided 
new insights into the overall spatial and 
temporal patterns in ridge-axis tectonic 
and magmatic processes. In particular, 
the seismicity data from the hydro-
phones indicated that regions along 
the axis with persistent hydrophone 
seismicity were most likely correlated 
with regions of active detachment 
faulting and core complex formation 
(Figure 3b; e.g., Escartín et al., 2008; 
Smith et al., 2008).

Figure 4 shows the multibeam 
bathymetry collected at 13°N and 
16°N with the location of hydrophone-
recorded earthquakes plotted. Seismicity 
occurring within the axial valley is 
probably associated with the high-angle 
portion of the detachment faults deep 
beneath the axis, such as observed at the 
TAG detachment fault at 26° along the 
MAR (deMartin et al., 2007). There is 
also seismicity within the core complexes 
themselves, suggesting deformation 
associated with flexing and bending of 
the detachment footwall both across and 
along the axis. 

The Way Forward
Hydrophones are currently being 
deployed for two years in the equatorial 
Atlantic (Figure 3a). This region is espe-
cially interesting because of its tectonic 
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 “The ultimate goal of all of these 
studies will be to identify the magmatic and 
rheological conditions that are required for 
the initiation and sustained evolution of these 
large-offset normal faults.” 
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history associated with the opening of 
the Atlantic Ocean. A strongly segmented 
MAR, with limited magma supply, is 
offset on some of the longest transform 
faults in the ocean (e.g., the > 900 km 
Romanche Transform Fault). Using the 
data collected by the equatorial hydro-
phone array, it will be possible to identify 
regions of high hydroacoustic seismicity 
at the ridge axis and, thus, probable 
regions of active detachment faulting. It 
is expected that detachment faults will 

be common along the equatorial Atlantic 
MAR because of the thicker and colder-
than-normal oceanic lithosphere as well 
as an inferred mantle thermal minimum 
in the region resulting in overall low melt 
production (e.g., Bonatti et al., 2001). 
Of interest will be whether the patterns 
in seismicity change along the axis, 
and whether the patterns are different 
north and south of the very long-offset 
Romanche Transform Fault, which 
likely separates geochemically distinct 

regions of the Atlantic. 
Along with continued acoustic 

monitoring of the mid-ocean ridges, 
a next step is the collection of near-
bottom geophysical and geological data. 
These data, combined with results from 
numerical models, will provide the 
most complete view of the mechanisms 
that operate and interact throughout an 
oceanic detachment fault system and, 
in particular, of the links between the 
distribution and nature of deformation, 
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Figure 3. (a) Map of the Atlantic Ocean. Yellow dots show locations of teleseismic earthquakes from the National Earthquake 
Information Center (NEIC) catalog with M > 4.5 between 1976 and 2009. Within the North MAR study area, high rates of 
hydroacoustically recorded seismicity were correlated to active detachment faults as shown in (b) (Smith et al., 2006, 2008; 
Escartín et al., 2008). A new study area in the equatorial Atlantic will yield information on ridge-axis detachment faulting in 
this region of large-offset transform faults. The Romanche Transform Fault is marked. Figure 4 shows the details of the 13°N 
and 16°N areas. (b) Histogram showing a bathymetric profile along the ridge axis in the top panel, number of hydrophone-
recorded earthquakes (EQs) per kilometer of ridge in the middle panel, and number of teleseismically recorded earthquakes 
per kilometer of ridge in the bottom panel. Dashed lines indicate the locations of transform faults. Rose shading shows 
regions of the ridge axis that spread by classic magmatic accretion, and blue shading shows regions of the axis that spread by 
detachment faulting on one flank. Note the correlation of high rates of seismicity with active detachment faulting. Red circles 
= known hydrothermal fields. Gray diamonds = known hydrothermal plumes. There also is an association of hydrothermal 
activity and active detachments. Histogram modified from Escartín et al. (2008)
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lithospheric alteration, and magmatic 
activity at the axis (e.g., Escartín 
and Canales, 2011). 

Sampling of rocks is also an important 
piece of the puzzle because the compo-
sition of basalts from the ridge axis 
can be used to estimate the magmatic 
budget at a ridge segment and, hence, 
to test current models relating magma 
supply and detachment fault formation 
(e.g., Buck et al., 2005; Tucholke et al., 
2008; MacLeod et al., 2009; Olive et al., 
2010; Schouten et al., 2010). To evaluate 
the models, it will be essential to study 
a number of different detachment faults 
and associated volcanic systems at the 
ridge axis, representing a spectrum of 
magmatic activity. 

The ultimate goal of all of these studies 

will be to identify the magmatic and 
rheological conditions that are required 
for the initiation and sustained evolu-
tion of these large-offset normal faults. 
Knowledge of these conditions will help 
us to understand how the oceanic litho-
sphere is constructed in settings where 
detachment faulting occurs.
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