Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 02

View Issue TOC
Volume 27, No. 2
Pages 46 - 57

OpenAccess

New Insights into the Emplacement Dynamics of Volcanic Island Landslides

By Sebastian F.L. Watt , Peter J. Talling , and James E. Hunt 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

Volcanic islands form the highest topographic structures on Earth and are the sites of some of the planet’s largest landslides. These landslides can rapidly mobilize hundreds of cubic kilometers of rock and sediment, and potentially generate destructive tsunamis on ocean-basin scales. The main unknown for tsunami hazard assessment is the way in which these landslides are emplaced. Understanding of landslide dynamics relies on interpretation of deposits from past events: it is necessary to understand where material within the deposit originated and the temporal sequence of the deposit’s formation. The degree of fragmentation in a volcanic landslide is controlled by its relative proportions of dense lavas and weak pyroclastic rocks; fragmentation is generally reduced during subaqueous relative to subaerial transport. In the submarine environment, the seafloor-sediment substrate commonly fails during emplacement of a volcanic landslide. However, in many cases, this sediment failure remains almost in situ as a deformed package rather than disaggregating to form a debris flow. Because seafloor sediment makes up a large proportion of many landslide deposits around volcanic islands, the magnitude of the primary volcanic failure cannot be readily assessed without a clear understanding of deposit constituents. Both the dimensions of the volcanic failure and the way in which it fails are of key importance for tsunami generation. Turbidite deposits suggest that some volcanic landslides occur in multiple retrogressive stages. This significantly reduces potential tsunami magnitude relative to models that assume emplacement of the landslide in a single stage.

Citation

Watt, S.F.L., P.J. Talling, and J.E. Hunt. 2014. New insights into the emplacement dynamics of volcanic island landslides. Oceanography 27(2):46–57, https://doi.org/10.5670/oceanog.2014.39.

References

Ablay, G., and M. Hürlimann. 2000. Evolution of the north flank of Tenerife by recurrent giant landslides. Journal of Volcanology and Geothermal Research 103:135–159, https://doi.org/10.1016/S0377-0273(00)00220-1.

Boulesteix, T., A. Hildenbrand, P.-Y. Gillot, and V. Soler. 2012. Eruptive response of oceanic islands to giant landslides: New insights from the geomorphologic evolution of the Teide-Pico Viejo volcanic complex (Tenerife, Canary). Geomorphology 138:61–73, https://doi.org/10.1016/j.geomorph.2011.08.025.

Coombs, M.L., S.M. White, and D.W. Scholl. 2007. Massive edifice failure at Aleutian arc volcanoes. Earth and Planetary Science Letters 256:403–418, https://doi.org/10.1016/j.epsl.2007.01.030.

Crandell, D.R. 1989. Gigantic Debris Avalanche of Pleistocene Age from Ancestral Mount Shasta Volcano, California, and Debris-Avalanche Hazard Zonation. US Geological Survey Bulletin 1861, 32 pp, http://pubs.usgs.gov/bul/1861/report.pdf.

Delcamp, A., B. van Wyk de Vries, and M.R. James. 2008. The influence of edifice slope and substrata on volcano spreading. Journal of Volcanology and Geothermal Research 177:925–943, https://doi.org/10.1016/j.jvolgeores.2008.07.014.

Deplus, C., A. Le Friant, G. Boudon, J.C. Komorowski, B. Villemant, C. Harford, J. Ségoufin, and J.L. Cheminée. 2001. Submarine evidence for large-scale debris avalanches in the Lesser Antilles Arc. Earth and Planetary Science Letters 192:145–157, https://doi.org/10.1016/S0012-821X(01)00444-7.

Di Roberto, A., M. Rossi, A. Bertagnini, M.P. Marani, and F. Gamberi. 2010. Distal turbidites and tsunamigenic landslides of Stromboli Volcano (Aeolian Islands, Italy). Pp. 719–732 in Submarine Mass Movements and Their Consequences. D.C. Mosher, R.C. Shipp, L. Moscardelli, J.D. Chaytor, C.D.P. Baxter, H.J. Lee, and R. Urgules, eds, Advances in Natural and Technological Hazards Research vol. 28, Springer.

Frey-Martínez, J., J. Cartwright, and D. James. 2006. Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Marine and Petroleum Geology 23:585–604, https://doi.org/10.1016/j.marpetgeo.2006.04.002.

Fritz, H.M., W.H. Hager, and H.E. Minor. 2004. Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering 130:287–302, https://doi.org/10.1061/(ASCE)0733-950X(2004)130:6(287).

Garcia, M.O. 1996. Turbidites from slope failure on Hawaiian volcanoes. Geological Society, London, Special Publications 110:281–294, https://doi.org/10.1144/GSL.SP.1996.110.01.22.

Glicken, H. 1996. Rockslide-Debris Avalanche of May 18, 1980, Mount St. Helens Volcano. US Geological Survey Open-File Report 96-677, http://vulcan.wr.usgs.gov/Projects/Glicken/framework.html.

Hunt, J.E., R.B. Wynn, D.G. Masson, P.J. Talling, and D.A.H. Teagle. 2011. Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: A case study from Icod landslide on north Tenerife, Canary Islands. Geochemistry, Geophysics, Geosystems 12, Q12007, https://doi.org/10.1029/2011GC003740.

Hunt, J.E., R.B. Wynn, P.J. Talling, and D.G. Masson. 2013a. Turbidite record of frequency and source of large volume (> 100 km3) Canary Island landslides in the last 1.5 Ma: Implications for landslide triggers and geohazards. Geochemistry, Geophysics, Geosystems 14:2,100–2,123, https://doi.org/10.1002/ggge.20139.

Hunt, J.E., R.B. Wynn, P.J. Talling, and D.G. Masson. 2013b. Multistage collapse of eight western Canary Island landslides in the last 1.5 Ma: Sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochemistry, Geophysics, Geosystems 14:2,159–2,181, https://doi.org/10.1002/ggge.20138.

Iverson, R.M. 1997. The physics of debris flows. Reviews of Geophysics 35:245–296, https://doi.org/10.1029/97RG00426.

Le Friant, A., G. Boudon, C. Deplus, and B. Villemant. 2003. Large-scale flank collapse events during the activity of Montagne Pelée, Martinique, Lesser Antilles. Journal of Geophysical Research 108:1,978–2,012, https://doi.org/10.1029/2001JB001624.

Løvholt, F., G. Pedersen, and G. Gisler. 2008. Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research 113, C09026, https://doi.org/10.1029/2007JC004603.

Manconi, A., M.A. Longpré, T.R. Walter, V.R. Troll, and T.H. Hansteen. 2009. The effects of flank collapses on volcano plumbing systems. Geology 37:1,099–1,102, https://doi.org/10.1130/G30104A.1.

Masson, D.G., M. Canals, B. Alonso, R. Urgeles, and V. Hühnerbach. 1998. The Canary debris flow: Source area morphology and failure mechanisms. Sedimentology 45:411–432, https://doi.org/10.1046/j.1365-3091.1998.0165f.x.

Masson, D.G., A.B. Watts, M.J.R. Gee, R. Urgeles, N.C. Mitchell, T.P. Le Bas, and M. Canals. 2002. Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews 57:1–35, https://doi.org/10.1016/S0012-8252(01)00069-1.

Masson, D.G., T. Le Bas, I. Grevemeyer, and W. Weinrebe. 2008. Flank collapse and large‐scale landsliding in the Cape Verde Islands, off West Africa. Geochemistry, Geophysics, Geosystems 9:Q07015, https://doi.org/10.1029/2008GC001983.

Masson, D.G., R.B. Wynn, and P.J. Talling. 2010. Large landslides on passive continental margins: Processes, hypotheses and outstanding questions. Pp. 153–165 in Submarine Mass Movements and Their Consequences. D.C. Mosher, R.C. Shipp, L. Moscardelli, J.D. Chaytor, C.D.P. Baxter, H.J. Lee, and R. Urgules, eds, Advances in Natural and Technological Hazards Research vol. 28, Springer.

Mazzanti, P., and F. De Blasio. 2013. The dynamics of subaqueous rock avalanches: The role of dynamic fragmentation. Pp. 35–40 in Landslide Science and Practice, vol. 5. C. Margottini, P. Canuti, and K. Sassa, eds, Springer-Verlag Berlin Heidelberg.

McGuire, W.J. 1996. Volcano instability: A review of contemporary themes. Geological Society, London, Special Publications 110:1–23, https://doi.org/10.1144/GSL.SP.1996.110.01.01.

Mitchell, N.C. 2003. Susceptibility of mid‐ocean ridge volcanic islands and seamounts to large‐scale landsliding. Journal of Geophysical Research 108:1,978–2,012, https://doi.org/10.1029/2002JB001997.

Montanaro, C., and J. Beget. 2011. Volcano collapse along the Aleutian Ridge (western Aleutian Arc). Natural Hazards and Earth System Sciences 11:715–730, https://doi.org/10.5194/nhess-11-715-2011.

Moore, J.G., and D.A. Clague. 2002. Mapping the Nuuanu and Wailau landslides in Hawaii. Pp. 223–244 in Hawaiian Volcanoes: Deep Underwater Perspectives. E. Takahashi, P.W. Lipman, M.O. Garcia, J. Naka, and S. Aramaki, eds, American Geophysical Union, Washington, DC, https://doi.org/10.1029/GM128p0223.

Moore, J.G., D.A. Clague, R.T. Holcomb, P.W. Lipman, W.R. Normark, and M.E. Torresan. 1989. Prodigious submarine landslides on the Hawaiian ridge. Journal of Geophysical Research 94:17,465–17,484, https://doi.org/10.1029/JB094iB12p17465.

Naranjo, J.A., and P. Francis. 1987. High velocity debris avalanche at Lastarria volcano in the north Chilean Andes. Bulletin of Volcanology 49:509–514, https://doi.org/10.1007/BF01245476.

Nishimura, Y. 2008. Volcanism-induced tsunamis and tsunamiites. Pp. 163–184 in Tsunamiites: Features and Implications. T. Shiki, Y. Tsuji, K. Minoura, and T. Yamazaki, eds, Elsevier.

Pinel, V., and F. Albino. 2013. Consequences of volcano sector collapse on magmatic storage zones: Insights from numerical modeling. Journal of Volcanology and Geothermal Research 252:29–37, https://doi.org/10.1016/j.jvolgeores.2012.11.009.

Roberts, J.A., and A. Cramp. 1996. Sediment stability on the western flanks of the Canary Islands. Marine Geology 134:13–30, https://doi.org/10.1016/0025-3227(96)00021-7.

Siebe, C., J.C. Komorowski, and M.F. Sheridan. 1992. Morphology and emplacement of an unusual debris-avalanche deposit at Jocotitlán volcano, Central Mexico. Bulletin of Volcanology 54:573–589, https://doi.org/10.1007/BF00569941.

Siebert, L. 1984. Large volcanic debris avalanches: Characteristics of source areas, deposits, and associated eruptions. Journal of Volcanology and Geothermal Research 22:163–197, https://doi.org/10.1016/0377-0273(84)90002-7.

Silver, E., S. Day, S. Ward, G. Hoffmann, P. Llanes, N. Driscoll, B. Appelgate, and S. Saunders. 2009. Volcano collapse and tsunami generation in the Bismarck Volcanic Arc, Papua New Guinea. Journal of Volcanology and Geothermal Research 186:210–222, https://doi.org/10.1016/j.jvolgeores.2009.06.013.

Talling, P.J., D.G. Masson, E.J. Sumner, and G. Malgesini. 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 59:1,939–2,003, https://doi.org/10.1111/j.1365-3091.2012.01353.x.

Tinti, S., G. Pagnoni, and F. Zaniboni. 2006. The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bulletin of Volcanology 68:462–479, https://doi.org/10.1007/s00445-005-0022-9.

Trincardi, F., and W.R. Normark. 1989. Pleistocene Suvero slide, Paola basin, southern Italy. Marine and Petroleum Geology 6:324–335, https://doi.org/10.1016/0264-8172(89)90029-9.

Viesca, R.C., and J.R. Rice. 2010. Modeling slope instability as shear rupture propagation in a saturated porous medium. Pp. 215–225 in Submarine Mass Movements and Their Consequences. D.C. Mosher, R.C. Shipp, L. Moscardelli, J.D. Chaytor, C.D.P. Baxter, H.J. Lee, and R. Urgules, eds, Advances in Natural and Technological Hazards Research vol. 28, Springer.

Wadge, G., P.W. Francis, C.F. Ramirez. 1995. The Socompa collapse and avalanche event. Journal of Volcanology and Geothermal Research 66:309–336, https://doi.org/10.1016/0377-0273(94)00083-S.

Ward, S.N. 2001. Landslide tsunami. Journal of Geophysical Research 106:11,201–11,215, https://doi.org/10.1029/2000JB900450.

Ward, S.N., and S. Day. 2003. Ritter Island volcano—Lateral collapse and the tsunami of 1888. Geophysical Journal International 154:891–902, https://doi.org/10.1046/j.1365-246X.2003.02016.x.

Watt, S.F.L., P.J. Talling, M.E. Vardy, V. Heller, V. Huhnerbach, M. Urlaub, S. Sarkar, D.G. Masson, T.J. Henstock, T.A. Minshull, and others. 2012a. Combinations of volcanic-flank and seafloor-sediment failure offshore Montserrat, and their implications for tsunami generation. Earth and Planetary Science Letters 319:228–240, https://doi.org/10.1016/j.epsl.2011.11.032.

Watt, S.F.L., P.J. Talling, M.E. Vardy, D.G. Masson, T.J. Henstock, V. Huhnerbach, T.A. Minshull, M. Urlaub, E. Lebas, A. Le Friant, and others. 2012b. Widespread and progressive seafloor-sediment failure following volcanic debris avalanche emplacement: Landslide dynamics and timing offshore Montserrat, Lesser Antilles. Marine Geology 323–325:69–94, https://doi.org/10.1016/j.margeo.2012.08.002.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.