Oceanography The Official Magazine of
The Oceanography Society
Volume 27 Issue 01

View Issue TOC
Volume 27, No. 1
Pages 148 - 159

OpenAccess

Interannual and Subdecadal Variability in the Nutrient Geochemistry of the Cariaco Basin

By Mary I. Scranton , Gordon T. Taylor, Robert Thunell , Claudia R. Benitez-Nelson , Frank Muller-Karger, Kent Fanning , Laura Lorenzoni, Enrique Montes, Ramon Varela, and Yrene Astor 
Jump to
Article Abstract Citation References Copyright & Usage
Article Abstract

The CARIACO Ocean Time Series program has made monthly measurements of oxygen, nutrients, and carbon system parameters (∑CO2, alkalinity, pH) in the Cariaco Basin since 1996. At the same time, sediment traps have collected settling particles at four to five depths ranging from 150 to 1,200 m. The depth of the transition from oxic to anoxic conditions has fluctuated dramatically over the time series due to changes in the occurrence of Caribbean water intrusions into the deep basin. Nutrient concentrations in the deep basin have increased steadily with time in a proportion reflective of the elemental ratios in the settling organic matter, although N:P ratios in the water column (approximately 16:1) differ from ratios in the accumulating nutrients (11:1) and the settling flux (ranging between 5:1 and 12.5:1). This difference is likely due to changes in the source material for remineralization, either because of sizeable ecosystem changes or changes in the relative importance of the terrestrial input of inorganic P or scavenging of P by mineral precipitation near the oxic/anoxic interface. Alternatively, there may have been changes in the degree of preferential remineralization of P.

Citation

Scranton, M.I., G.T. Taylor, R. Thunell, C.R. Benitez-Nelson, F. Muller-Karger, K. Fanning, L. Lorenzoni, E. Montes, R. Varela, and Y. Astor. 2014. Interannual and subdecadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography 27(1):148–159, https://doi.org/10.5670/oceanog.2014.18.

References

Astor, Y., L. Lorenzoni, and M.I. Scranton, eds. 2011. Handbook of Methods for the Analysis of Oceanographic Parameters at the Cariaco Time Series Station. Available on line at: http://www.us-ocb.org/documents/CARIACO_Methods.pdf.

Astor, Y.M., L. Lorenzoni, R. Thunell, R. Varela, F. Muller-Karger, L. Troccoli, G.T. Taylor, M.I. Scranton, E. Tappa, and D. Rueda. 2013. Interannual variability in sea surface temperature and fCO2 changes in the Cariaco Basin. Deep Sea Research Part II 93:33–43, https://doi.org/10.1016/j.dsr2.2013.01.002.

Astor, Y., F. Muller-Karger, and M.I. Scranton. 2003. Seasonal and interannual variation in the hydrography of the Cariaco Basin: Implications for basin ventilation. Continental Shelf Research 23:125–144, https://doi.org/10.1016/S0278-4343(02)00130-9.

Bacon, M.P., P.G. Brewer, D.W. Spencer, J.W. Murray, and J. Goddard. 1980. Lead-210, polonium-210, manganese and iron in the Cariaco Trench. Deep Sea Research Part A 27:119–135, https://doi.org/10.1016/0198-0149(80)90091-6.

Benitez-Nelson, C.R., L.O. Madden, R.M. Styles, R.C. Thunell, and Y. Astor. 2007. Inorganic and organic sinking particulate phosphorus fluxes across the oxic/anoxic water column of Cariaco Basin, Venezuela. Marine Chemistry 105:90–100, https://doi.org/10.1016/j.marchem.2007.01.007.

Black, D.E., M.A. Abahazi, R.C. Thunell, A. Kaplan, E.J. Tappa, and L.C. Peterson. 2007. An 8-century tropical Atlantic SST record from the Cariaco Basin: Baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography 22, PA4204, https://doi.org/10.1029/2007PA001427.

Black, D.E., R.C. Thunell, A. Kaplan, L.C. Peterson, and E.J. Tappa. 2004. A 2000-year record of Caribbean and tropical North Atlantic hydrographic variability. Paleoceanography 19, PA2022, https://doi.org/10.1029/2003PA000982.

Black, D., R. Thunell, K. Wejnert, and Y. Astor. 2011. Carbon isotope composition of Caribbean Sea surface waters: Response to the uptake of anthropogenic CO2. Geophysical Research Letters 38, L16609, https://doi.org/10.1029/2011GL048538.

Buesseler, K.O. 1991. Do upper-ocean sediment traps provide an accurate record of particle-flux? Nature 353:420–423, https://doi.org/10.1038/353420a0.

Casey, K.S., T.B. Brandon, P. Cornillon, and R. Evans. 2010. The past, present, and future of the AVHRR Pathfinder SST Program. Pp. 273–287 in Oceanography from Space: Revisited. V. Barale, J.F.R. Gower, and L. Alberotanza, eds, Springer, https://doi.org/10.1007/978-90-481-8681-5_16.

Chollett, I., F.E. Muller-Karger, S.F. Heron, W. Skirving, and P.J. Mumby. 2012. Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico. Marine Pollution Bulletin 64:956–965, https://doi.org/10.1016/j.marpolbul.2012.02.016.

Deuser, W.G. 1973. Cariaco Trench: Oxidation of organic matter and residence time of anoxic water. Nature 242:601–603, https://doi.org/10.1038/242601b0.

deBaar, H.J.W., C.R. German, H. Elderfield, and P. Vangaans. 1988. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta 52:1,203–1,219, https://doi.org/10.1016/0016-7037(88)90275-X.

Dellwig, O., T. Leipe, C. März, M. Glockzin, F. Pollehne, B. Schnetger, E.V. Yakushev, M. Böttcher and H.-J. Brumsack. 2010. A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochimica et Cosmochimica Acta 74:7,100–7,115, https://doi.org/10.1016/j.gca.2010.09.017.

Fanning, K., and M.E.Q. Pilson. 1972. A model for the anoxic zone of the Cariaco Trench. Deep Sea Research 19:847–863, https://doi.org/10.1016/0011-7471(72)90003-4.

Goni, M.A., H. Aceves, B. Benitez-Nelson, E. Tappa, R. Thunell, D.E. Black, F. Muller-Karger, Y. Astor, and R. Varela. 2009. Oceanographic and climatologic controls on the compositions and fluxes of biogenic materials in the water column and sediments of the Cariaco Basin over the Late Holocene. Deep Sea Research Part I 56:614–640, https://doi.org/10.1016/j.dsr.2008.11.010

Goni, M.A., M.P. Woodworth, H.L. Aceves, R.C. Thunell, E. Tappa, D. Black, F. Muller-Karger, Y. Astor, and R. Varela. 2004. Generation, transport, and preservation of the alkenone-based U-37K’ sea surface temperature index in the water column and sediments of the Cariaco Basin (Venezuela). Global Biogeochemical Cycles 18, GB2001, https://doi.org/10.1029/2003GB002132.

Hashimoto, L.K., W.A Kaplan, W.C. Wofsy, and M.B. McElroy. 1983. Transformations of fixed nitrogen and N2O in the Cariaco Trench. Deep Sea Research Part A 30:575–590, https://doi.org/10.1016/0198-0149(83)90037-7.

Hastings, D., and S. Emerson. 1988. Sulfate reduction in the presence of low oxygen levels in the water column of the Cariaco Trench. Limnology and Oceanography 33:391–396, https://doi.org/10.4319/lo.1988.33.3.0391.

Haug, G.H., K.A. Hughen, D.M. Sigman, L.C. Peterson, and U. Rohl. 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293:1,304–1,308, https://doi.org/10.1126/science.1059725.

Holmén, K.J., and C.G.H. Rooth. 1990. Ventilation of the Cariaco Trench, a case of multiple source competition? Deep Sea Research Part A 37:203–225, https://doi.org/10.1016/0198-0149(90)90124-E.

Hughen, K.A., J.R. Southon, S.J. Lehman, and J.T. Overpeck. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:1,951–1,954, https://doi.org/10.1126/science.290.5498.1951.

Jacobs, L., S. Emerson, and S.S. Huested. 1987. Trace-metal geochemistry in the Cariaco Trench. Deep Sea Research Part A 34:965–981, https://doi.org/10.1016/0198-0149(87)90048-3.

Lorenzoni, L., C.R. Benitez-Nelson, R.C. Thunell, D. Hollander, R. Varela, Y. Astor, F.A. Audemard, and F.E. Muller-Karger. 2012. Potential role of event-driven sediment transport on sediment accumulation in the Cariaco Basin, Venezuela. Marine Geology 307:105–110, https://doi.org/10.1016/j.margeo.2011.12.009.

Lorenzoni, L., R.C. Thunell, C.R. Benitez-Nelson, D. Hollander, N. Martinez, E. Tappa, R. Varela, Y. Astor, and F.E. Muller-Karger. 2009. The importance of subsurface nepheloid layers in transport and delivery of sediments to the eastern Cariaco Basin, Venezuela. Deep Sea Research Part I 56:2,249–2,262, https://doi.org/10.1016/j.dsr.2009.08.001.

Martinez, N.C., R.W. Murray, R.C. Thunell, L.C. Peterson, F. Muller-Karger, L. Lorenzoni, Y. Astor, and R. Varela. 2010. Local and regional geochemical signatures of surface sediments from the Cariaco Basin and Orinoco Delta, Venezuela. Geology 38:159–162, https://doi.org/10.1130/G30487.1.

Martiny, A.C., C.T.A. Pham, F.W. Primeau, J.A. Vrugt, J.K. Moore, S.A. Levin, and M.W. Lomas. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience 6:279–283, https://doi.org/10.1038/ngeo1757.

McConnell, M.C., R.C. Thunell, L. Lorenzoni, Y. Astor, J.D. Wright, and R. Fairbanks. 2009. Seasonal variability in the salinity and oxygen isotopic composition of seawater from the Cariaco Basin, Venezuela: Implications for paleosalinity reconstructions. Geochemistry, Geophysics, Geosystems 10, Q06019, https://doi.org/10.1029/2008GC002035.

McParland, E.L., C.R. Benitez-Nelson, L. Lorenzoni, and A. Rollings. 2012. Understanding the composition of phosphorus in suspended particles of the Cariaco Basin. Poster presented at the ASLO 2013 Aquatic Sciences Meeting, February 17–22, 2013, New Orleans, LA.

Monteiro, P.M.S., B. Dewitte, M.I. Scranton, A. Paulmier, and A.K. van der Plas. 2011. The role of open ocean boundary forcing on seasonal to decadal-scale variability and long-term change of natural shelf hypoxia. Environmental Research Letters 6, 025002, https://doi.org/10.1088/1748-9326/6/2/025002.

Montes, E., M.A. Altabet, F.E. Muller-Karger, M.I. Scranton, R.C. Thunell, C. Benitez-Nelson, L. Lorenzoni, and Y.M. Astor. 2013. Biogenic nitrogen gas production at the oxic-anoxic interface in the Cariaco Basin, Venezuela. Biogeosciences 10:267–279, https://doi.org/10.5194/bg-10-267-2013.

Montes, E., F.E. Muller-Karger, R. Thunell, D. Hollander, Y. Astor, R. Varela, I. Soto, and L. Lorenzoni. 2012. Vertical fluxes of particulate biogenic material through the euphotic and twilight zones in the Cariaco Basin, Venezuela. Deep-Sea Research Part I 67:73–84, https://doi.org/10.1016/j.dsr.2012.05.005.

Muller-Karger, F.E., C.R. McClain, T.R. Fisher, W.E. Esaias, and R. Varela. 1989. Pigment distribution in the Caribbean Sea: Observations from Space. Progress in Oceanography 23:23–69, https://doi.org/10.1016/0079-6611(89)90024-4.

Muller-Karger, F., R. Varela, R. Thunell, Y. Astor, H. Zhang, R. Luerssen, and C. Hua. 2004. Processes of coastal upwelling and carbon flux in the Cariaco Basin. Deep Sea Research Part II 51:927–943, https://doi.org/10.1016/j.dsr2.2003.10.010.

Muller-Karger, F., R. Varela, R. Thunell, M. Scranton, R. Bohrer, G. Taylor, J. Capelo, Y. Astor, E. Tappa, T.-Y. Ho, and J.J. Walsh. 2001. Annual cycle of primary production in the Cariaco Basin: Response to upwelling and implications for vertical export. Journal of Geophysical Research 106:4,527–4,542, https://doi.org/10.1029/1999JC000291.

Muller-Karger, F.E., R. Varela, R.C. Thunell, M.I. Scranton, G.T. Taylor, Y. Astor, C.R. Benitez-Nelson, L. Lorenzoni, E. Tappa, M.A. Goñi, and others. 2010. The CARIACO Oceanographic Time Series. Pp. 454–464 in Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. JGOFS Continental Margins Task Team (CMTT). K.-K. Liu, L. Atkinson, R. Quinones, and L. Talaue-McManus, eds, Springer-Verlag, Berlin/Heidelberg.

Percy, D., X. Li, G.T. Taylor, Y. Astor, and M.I. Scranton. 2008. Controls on iron, manganese and intermediate oxidation state sulfur compounds in the Cariaco Basin. Marine Chemistry 111:47–62, https://doi.org/10.1016/j.marchem.2007.02.001.

Peterson, L.C., J.T. Overpeck, N.G. Kipp, and J. Imbrie. 1991. A high-resolution late Quaternary upwelling record from the anoxic Cariaco Basin, Venezuela. Paleoceanography 6:99–119, https://doi.org/10.1029/90PA02497.

Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on the composition of seawater. Pp. 26–77 in The Sea, vol. 2. M.N. Hill, ed., John Wiley and Sons, New York.

Reeburgh, W.S. 1976. Methane consumption in Cariaco Trench waters and sediments. Earth and Planetary Science Letters 28:337–344, https://doi.org/10.1016/0012-821X(76)90195-3.

Richards, F.A. 1975. The Cariaco Basin (Trench). Oceanography and Marine Biology Annual Reviews 13:11–67.

Richards, F.A., and B.B. Benson. 1961. Nitrogen/argon and nitrogen isotope ratios in 2 anaerobic environments, the Cariaco Trench in the Caribbean Sea and Dramsfjord, Norway. Deep Sea Research 7:254–264, https://doi.org/10.1016/0146-6313(61)90043-0.

Richards, F.A. and R. Vaccaro. 1956. The Cariaco Trench, an anaerobic basin in the Caribbean Sea. Deep Sea Research 3:214–228, https://doi.org/10.1016/0146-6313(56)90005-3.

Romero, O.E., R.C. Thunell, Y. Astor, and R. Varela. 2009. Seasonal and interannual dynamics in diatom production in the Cariaco Basin, Venezuela. Deep Sea Research Part I 56:571–581, https://doi.org/10.1016/j.dsr.2008.12.005.

Ruiz-Ochoa, M., E. Beier, G. Bernal, and E.D. Barton. 2012. Sea surface temperature variability in the Colombian Basin, Caribbean Sea. Deep-Sea Research Part I 64:43–53, https://doi.org/10.1016/j.dsr.2012.01.013.

Samodurov, A.S., M.I. Scranton, Y, Astor, L.I. Ivanov, A.M. Chukharev, V.N. Belokopytov, and L.V. Globina. 2013. Modeling vertical exchange of heat, salt, and other dissolved substances in the Cariaco Basin. Deep Sea Research Part I 71:61–73, https://doi.org/10.1016/j.dsr.2012.09.001.

Scranton, M.I. 1988. Temporal variations in the methane content of the Cariaco Trench. Deep Sea Research 35:1,511–1,523, https://doi.org/10.1016/0198-0149(88)90100-8.

Scranton, M.I., Y. Astor, R. Bohrer, T.-H. Ho, and F. Muller-Karger. 2001. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep Sea Research Part I 48:1,605–1,625, https://doi.org/10.1016/S0967-0637(00)00087-X.

Scranton, M.I., F.L. Sayles, M.P. Bacon, and P.G. Brewer. 1987. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Research 34:945–963, https://doi.org/10.1016/0198-0149(87)90047-1. (ERRATUM: Deep-Sea Research 34:1,653, https://doi.org/10.1016/0198-0149(87)90114-2)

Spencer, D.W., and P.G. Brewer. 1971. Vertical advection diffusion and redox potentials as controls on distribution of manganese and other trace metals dissolved in waters of Black Sea. Journal of Geophysical Research 76:5,877–5,892, https://doi.org/10.1029/JC076i024p05877.

Taylor, G.T., F. Muller-Karger, R.C. Thunell, M.I. Scranton, Y. Astor, R. Varela, L. Troccoli-Ghinaglia, L. Lorenzoni, K.A. Fanning, S. Hameed, and O. Doherty. 2012. Ecosystem response to global climate change in the southern Caribbean Sea. Proceedings of the National Academy of Sciences of the United States of America 109:19,315–19,320, https://doi.org/10.1073/pnas.1207514109.

Tedesco, K., R. Thunell, Y. Astor, and F. Muller-Karger. 2007. The oxygen isotope composition of planktonic foraminifera from the Cariaco Basin, Venezuela: Seasonal and interannual variations. Marine Micropaleontology 62:180–193, https://doi.org/10.1016/j.marmicro.2006.08.002.

Thunell, R.C., D.M. Sigman, F. Muller-Karger, Y. Astor, and R. Varela. 2004. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Global Biogeochemical Cycles 18, GB3001, https://doi.org/10.1029/2003GB002185.

Zhang, J.-Z., and F.J. Millero. 1993. The chemistry of the anoxic waters in the Cariaco Trench. Deep Sea Research Part I 40:1,023–1,041, https://doi.org/10.1016/0967-0637(93)90088-K.

Copyright & Usage

This is an open access article made available under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately, provide a link to the Creative Commons license, and indicate the changes that were made to the original content. Images, animations, videos, or other third-party material used in articles are included in the Creative Commons license unless indicated otherwise in a credit line to the material. If the material is not included in the article’s Creative Commons license, users will need to obtain permission directly from the license holder to reproduce the material.