Oceanography The Official Magazine of
The Oceanography Society
Volume 32 Issue 01

View Issue TOC
Volume 32, No. 1
Pages 72 - 76

Astronomical Time Keeping of Earth History: An Invaluable Contribution of Scientific Ocean Drilling

Kate Littler Thomas WesterholdAnna Joy DruryDiederik LiebrandLorraine LisieckiHeiko Pälike
Article Abstract

The mathematically predictable cyclic movements of Earth with respect to the sun provides the basis for constructing highly accurate and precise age models for Earth’s past. Construction of these astronomically calibrated timescales is pivotal to placing major transitions and events in the geological record in their temporal context. Understanding the precise nature and timing of past events is of great societal relevance as we seek to apply these insights to constrain near-future climate scenarios. Scientific ocean drilling has been critical in this endeavor, as the recovery and analysis of high-quality and continuous marine sedimentary archives underpin such high-​resolution age models for paleoclimate records. This article identifies key astronomically calibrated records through the past 66 million years (the Cenozoic) collected during multiple Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program expeditions, highlights major achievements, and suggests where future work is needed.

Citation

Littler, K., T. Westerhold, A.J. Drury, D. Liebrand, L. Lisiecki, and H. Pälike. 2019. Astronomical time keeping of Earth history: An invaluable contribution of scientific ocean drilling. Oceanography 32(1):72–76, https://doi.org/10.5670/oceanog.2019.122.

References

Beddow, H.M., D. Liebrand, D.S. Wilson, F.J. Hilgen, A. Sluijs, B.S. Wade, and L.J. Lourens. 2018. Astronomical tunings of the Oligocene-Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle. Climate of the Past 14:255–270, https://doi.org/10.5194/cp-14-255-2018.

Billups, K., H. Pälike, J.E.T. Channell, J.C. Zachos, and N.J. Shackleton. 2004. Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale. Earth and Planetary Science Letters 224:33–44, https://doi.org/10.1016/​j.epsl.2004.05.004.

Boulila, S., M. Vahlenkamp, D. De Vleeschouwer, J. Laskar, Y. Yamamoto, H. Pälike, S. Kirtland Turner, P.F. Sexton, T. Westerhold, and U. Röhl. 2018. Towards a robust and consistent middle Eocene astronomical timescale. Earth and Planetary Science Letters 486:94–107, https://doi.org/​10.1016/​j.epsl.2018.01.003.

Clark, P.U., D. Archer, D. Pollard, J.D. Blum, J.A. Rial, V. Brovkin, A.C. Mix, N.G. Pisias, and M. Roy. 2006. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews 25:3,150–3,184, https://doi.org/10.1016/​j.quascirev.2006.07.008.

Coxall, H.K., P.A. Wilson, H. Pälike, C.H. Lear, and J. Backman. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57, https://doi.org/10.1038/nature03135.

Coxall, H.K., and P.A. Wilson. 2011. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling. Paleoceanography 26(2), https://doi.org/​10.1029/2010PA002021.

Dowsett, H.J., M.M. Robinson, A.M. Haywood, D.J. Hill, A.M. Dolan, D.K. Stoll, W.-L. Chan, A. Abe-Ouchi, M.A. Chandler, N.A. Rosenbloom, and others. 2012. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nature Climate Change 2:365–371, https://doi.org/10.1038/nclimate1455.

Drury, A.J., T. Westerhold, T. Frederichs, J. Tian, R.H. Wilkens, J.E.T. Channell, H.F. Evans, C.M. John, M.W. Lyle, and U. Röhl. 2017. Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective. Earth and Planetary Science Letters 475:254–266, https://doi.org/10.1016/j.epsl.2017.07.038.

Drury, A.J. G.P. Lee, W.R. Gray, M.W. Lyle, T. Westerhold, A.E. Shevenell, and C.M. John. 2018a. Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. Paleoceanography and Paleoclimatology 33:246–243, https://doi.org/​10.1002/2017PA003245.

Drury, A.J., T. Westerhold, D. Hodell, and U. Röhl. 2018b. Reinforcing the North Atlantic backbone: Revision and extension of the composite splice at ODP Site 982. Climates of the Past 14:321–338, https://doi.org/10.5194/cp-14-321-2018.

Hays, J.D., J. Imbrie, N.J. Shackleton. 1976. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194(4270):1,121–1,132, https://doi.org/​10.1126/​science.194.4270.1121.

Hodell, D.A., J.H. Curtis, F.J. Sierro, and M.E. Raymo. 2001. Correlation of late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic. Paleoceanography 16:164–178, https://doi.org/​​10.1029/1999PA000487.

Holbourn, A., W. Kuhnt, M. Schulz, and H. Erlenkeuser. 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438:483–487, https://doi.org/10.1038/nature04123.

Holbourn, A., W. Kuhnt, M. Schulz, J.-A. Flores, and N. Andersen. 2007. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth and Planetary Science Letters 261(3–4):534–550, https://doi.org/​10.1016/j.epsl.2007.07.026.

Holbourn, A., W. Kuhnt, M. Lyle, L. Schneider, O. Romero, and N. Andersen. 2014. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42:19–22, https://doi.org/10.1130/G34890.1.

Holbourn, A., W. Kuhnt, K.G.D. Kochhann, N. Andersen, and K.J. Sebastian Meier. 2015. Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology 43:123–126, https://doi.org/10.1130/G36317.1.

Holbourn, A.E., W. Kuhnt, S.C. Clemens, K.G.D. Kochhann, J. Jöhnck, J. Lübbers, and N. Andersen. 2018. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications 9:1584, https://doi.org/​10.1038/s41467-018-03950-1.

Imbrie, J., J.D. Hay, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.G. Pisias, W.L. Prell, and N.J. Shackleton. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. Pp. 269–305 in Milankovitch and Climate: Understanding the Response to Astronomical Forcing. Proceedings of the NATO Advanced Research Workshop held November 30–December, 4, 1982, in Palisades, NY, A. Berger, J. Imbrie, H. Hays, G. Kukla, and B. Saltzman, eds, D. Reidel Publishing, Dordrecht.

Laskar, J., P. Robutel, F. Joutel, M. Gastineau, A.C.M. Correia, B. Levrard. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428(1):261–285, https://doi.org/​10.1051/0004-6361:20041335.

Lauretano, V., K. Littler, M. Polling, J.C. Zachos, and L.J. Lourens. 2015. Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum. Climates of the Past 11:1,313–1,324, https://doi.org/10.5194/cp-11-1313-2015.

Lauretano, V., F.J. Hilgen, J.C. Zachos, L.J. Lourens. 2016. Astronomically tuned age model for the early Eocene carbon isotope events: A new high-​resolution δ13C benthic record of ODP Site 1263 between ~49 and ~54 Ma. Newsletters on Stratigraphy 49(2):383–400, https://doi.org/10.1127/nos/2016/0077.

Lauretano, V., J.C. Zachos, and L.J. Lourens. 2018. Orbitally paced carbon and deep-sea temperature changes at the peak of the Early Eocene Climatic Optimum. Paleoceanography and Paleoclimatology 33, https://doi.org/​10.1029/​2018PA003422.

Liebrand, D., H.M. Beddow, L.J., Lourens, H. Pälike, I. Raffi, S.M. Bohaty, F.J. Hilgen, M.J.M. Saes, P.A. Wilson, A.E. van Dijk, and others. 2016. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth and Planetary Science Letters 450:392–405, https://doi.org/10.1016/​j.epsl.2016.06.007.

Liebrand, D., A.T.M. de Bakker, H.M. Beddow, P.A. Wilson, S.M. Bohaty, G. Ruessink, H. Pälike, S.J. Batenburg, F.J. Hilgen, D.A. Hodell, and others. 2017. Evolution of the early Antarctic ice ages. Proceedings of the National Academy of Sciences of the United States of America 114(15):3,867–3,872, https://doi.org/​10.1073/pnas.1615440114.

Littler, K., U. Röhl, T. Westerhold, and J.C. Zachos. 2014. A high-resolution benthic stable-​isotope record for the South Atlantic: Implications for orbital-​scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth and Planetary Science Letters 401:18–30, https://doi.org/​10.1016/j.epsl.2014.05.054.

Lisiecki, L.E., and M.E. Raymo. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003, https://doi.org/​10.1029/2004PA001071.

Lisiecki, L.E., and M.E. Raymo. 2007. Plio-Pleistocene climate evolution: Trends and transitions in glacial cycle dynamics. Quaternary Science Reviews 26:56–69, https://doi.org/10.1016/​j.quascirev.2006.09.005.

Milankovitch, M.M. 1941. Canon of Insolation and the Ice-Age Problem. Royal Serbian Academy, Belgrade. [English translation by the Israel Program for Scientific Translations, published for the United States Department of Commerce and the National Science Foundation, Washington, DC.]

Pälike, H., J. Frazier, and J.C. Zachos. 2006a. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quaternary Science Reviews 25(23):3,138–3,149, https://doi.org/​10.1016/j.quascirev.2006.02.011.

Pälike, H., R.D. Norris, J.O. Herrle, P.A. Wilson, H.K. Coxall, C.H. Lear, N.J. Shackleton, A.K. Tripati, and B.S. Wade. 2006b. The heartbeat of the Oligocene climate system. Science 314:1,894–1,898, https://doi.org/10.1126/science.1133822.

Sexton, P.F., R.D. Norris, P.A. Wilson, H. Pälike, T. Westerhold, U. Röhl, C.T. Bolton, and S. Gibbs. 2011. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471:349–352, https://doi.org/10.1038/nature09826.

Shackleton, N.J., and S. Crowhurst. 1997. Sediment fluxes based on an orbitally tuned time scale 5 Ma to 14 Ma, Site 926. Pp. 69–82 in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 154, N.J. Shackleton, W.W. Curry, C. Richter, and T. Bralower, eds, College Station, TX.

Shackleton, N.J., S.J. Crowhurst, G.P. Weedon, and J. Laskar. 1999. Astronomical calibration of Oligocene–Miocene time. Philosophical Transactions of the Royal Society A 357(1757), https://doi.org/10.1098/rsta.1999.0407.

Stap, L., L.J. Lourens, E. Thomas, A. Sluijs, S. Bohaty, and J.C. Zachos. 2010. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology 38(7):607–610, https://doi.org/10.1130/G30777.1.

Tian, J., M. Yang, M.W. Lyle, R. Wilkens, and J.K. Shackford. 2013. Obliquity and long eccentricity pacing of the Middle Miocene climate transition. Geochemistry, Geophysics, Geosystems 14:1,740–1,755, https://doi.org/10.1002/ggge.20108.

Vahlenkamp, M., I. Niezgodzki, D. De Vleeschouwer, T. Bickert, D. Harper, S. Kirtland Turner, G. Lohmann, P.F. Sexton, J.C. Zachos, and H. Pälike. 2018. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene. Earth and Planetary Science Letters 484:329–340, https://doi.org/10.1016/​j.epsl.2017.12.016.

van Peer, T.E., C. Xuan, P.C., Lippert, D. Liebrand, C. Agnini, and P.A. Wilson. 2017. Extracting a detailed magnetostratigraphy from weakly magnetized, Oligocene to Early Miocene sediment drifts recovered at IODP Site U1406 (Newfoundland Margin, northwest Atlantic Ocean). Geochemistry, Geophysics, Geosystems 18(11):3,910–3,928, https://doi.org/10.1002/2017GC007185.

Westerhold, T., U. Röhl, B. Donner, H.K. McCarren, and J.C. Zachos. 2011. A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography 26(2), https://doi.org/​10.1029/​2010PA002092.

Westerhold, T., U Röhl, H. Pälike, R. Wilkens, P.A. Wilson, and G. Acton. 2014. Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene. Climates of the Past 10:955–973, https://doi.org/10.5194/cp-10-955-2014.

Westerhold, T., U. Röhl, T. Frederichs, C. Agnini, I. Raffi, J.C. Zachos, and R.H. Wilkens. 2017. Astronomical calibration of the Ypresian timescale: Implications for seafloor spreading rates and the chaotic behavior of the solar system? Climates of the Past 13:1,129–1,152, https://doi.org/10.5194/cp-13-1129-2017.

Westerhold, T., U. Röhl, B. Donner, and J.C. Zachos. 2018. Global extent of Early Eocene hyperthermal events: A new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology 33(6):626–642, https://doi.org/​10.1029/2017PA003306.

Wilkens, R.H., T. Westerhold, A.J. Drury, M. Lyle, T. Gorgas, and J. Tian. 2017. Revisiting the Ceara Rise, equatorial Atlantic Ocean: Isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma. Climates of the Past 13:779–793, https://doi.org/10.5194/cp-13-779-2017.

Woodard, S.C., Y. Rosenthal, K.G. Miller, J.D. Wright, B.K. Chiu, and K.T. Lawrence. 2014. Antarctic role in Northern Hemisphere glaciation. Science 346:847, https://doi.org/10.1126/science.1255586.

Zachos, J.C., N.J., Shackleton, J.S. Revenaugh, H. Pälike, and B.P. Flower. 2001. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 292:274–278, https://doi.org/​10.1126/science.1058288.

Zachos, J.C., G.R. Dickens, and R.E. Zeebe. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451(7176):279–283, https://doi.org/10.1038/nature06588.

Zachos, J.C., H. McCarren, B. Murphy, U. Röhl, and T. Westerhold. 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters 299(1):242–249, https://doi.org/10.1016/​j.epsl.2010.09.004.

Zeeden, C., F. Hilgen, T. Westerhold, L.J. Lourens, U. Röhl, and T. Bickert. 2013. Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 369:430–451, https://doi.org/​10.1016/j.palaeo.2012.11.009.